Up: Back to the Chemistry 2000 index

Properties of Exponential and Logarithmic Functions

1.
a0=1
2.
axay = ax+y
3.
ax/ay = ax-y
4.
a-x = 1/ax
5.
(ax)y = axy
6.
$a^{1/x} = \sqrt[\scriptstyle x]{a}$
7.
(ab)x = axbx
8.
Logarithms are inverse functions of exponentials:
9.
10.
$\log_a 1=0$
11.
$\log_a(xy) = \log_a x + \log_a y$
12.
$\log_a(x/y) = \log_a x - \log_a y$
13.
$\log_a(1/x) = -\log_a x$
14.
$\log_a(x^y) = y\log_a x$


Footnotes

...$\log_{10}$.1
One of the reasons that I like to explicitly write down the base is that some people, mostly mathematicians, use $\log$ for the natural logarithm rather than the base-10 logarithm. Writing down the base avoids any possible confusion.


Marc Roussel
2002-01-04