The first step for each session should be a review of the previous session's notes. The first few paragraphs of my previous session deserve repeating.
The two major ideas so far are those of a group and those of a field.
A group is a set of elements and a binary operation (often called a composition) that describes how to obtain an element given two other elements. The set is closed under this operation (i.e. given any two elements in the set and the operation, one always obtains another element in the set). There is an identity element (usually represented by the letter e) such that for any element in the group, xe = ex = x. Every element has an inverse (i.e. xy = yx = e). Finally, the associative law holds for the operation (i.e. for any three elements, (xy)z = x(yz) ).
A field is a special type of group that has a second binary operation (the two operations are usually called addition and multiplication) where element has a multiplicative inverse. One example of a field is the set of integers 0, 1, 2, ... (p - 1) where p is a prime integer and the two operations of addition and multiplication modulo p.
Now to make some notes for chapter 5. Making these notes also acts as a form of review. |