next up previous
Up: Chemistry 3730 Fall 2000 Previous: Answer one of the

Data and formulas

$h =6.626\,068\,8\times 10^{-34}\,\mathrm{J/Hz}$

$\hbar = \displaystyle\frac{h}{2\pi}
= 1.054\,571\,60\times 10^{-34}\,\mathrm{J\,s}$

$1\,\mathrm{amu} = 1.660\,538\,73\times 10^{-27}\,\mathrm{kg}$

$E = h\nu$

$\displaystyle\frac{1}{\mu} = \frac{1}{m_1}+\frac{1}{m_2}$

$E^\mathrm{var} =
\displaystyle\frac{\langle\phi\vert\hat{H}\vert\phi\rangle}{\langle\phi\vert\phi\rangle}$

The energy of a system perturbed by an additive Hamiltonian term $\hat{H}^{(1)}$ can be expressed in the form E = E(0) + E(1), where

\begin{displaymath}E^{(1)} = \langle\psi^{(0)}\vert\hat{H}^{(1)}\vert\psi^{(0)}\rangle.\end{displaymath}

If $\ell_1$ and $\ell_2$ are two angular momentum quantum numbers, the quantum number for the sum of the associated vectors can take on any of the following values:

\begin{displaymath}\vert\ell_1-\ell_2\vert,\vert\ell_1-\ell_2\vert+1,\ldots,\ell_1+\ell_2-1,\ell_1+\ell_2.\end{displaymath}

If $\hat{A}$, $\hat{B}$ and $\hat{C}$ are arbitrary operators and k is a constant,

\begin{eqnarray*}[\hat{A},\hat{A}]& = & 0\\
\mbox{}[\hat{A},\hat{B}] & = & -[\h...
...t{C}] & = & \hat{A}[\hat{B},\hat{C}]
+ [\hat{A},\hat{C}]\hat{B}
\end{eqnarray*}


Additionally, $[\hat{x},\hat{p}_x] = i\hbar$.

Terms for ground states of p block elements:

Configuration Terms
p or p5 $\isotope{2}{}{P}$
p2 or p4 $\isotope{3}{}{P}$, $\isotope{1}{}{D}$, $\isotope{1}{}{S}$
p3 $\isotope{4}{}{S}$, $\isotope{2}{}{D}$, $\isotope{2}{}{P}$

For the particle in a box,

\begin{displaymath}\psi_n = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right)\end{displaymath}

and

\begin{displaymath}E_n = \frac{n^2h^2}{8mL^2},\end{displaymath}

with $n=1,2,3,\ldots$

In spherical polar coordinates,

\begin{displaymath}dV = r^2\sin\theta\,dr\,d\theta\,d\phi.\end{displaymath}

The polar angles have the following ranges:

\begin{eqnarray*}\theta & \in & [0,\pi],\\
\phi & \in & [0,2\pi).
\end{eqnarray*}


The rotational absorption selection rule is $\Delta J=1$. The rotational energy of a diatomic molecule is given by

\begin{displaymath}E_J = J(J+1)\frac{\hbar^2}{2\mu R^2}\end{displaymath}

with $J = 0,1,2,\ldots$

To use ghost atoms in HyperChem: Select the atom you want to turn into a ghost atom. Choose Name Selection from the Select menu. Name the selected atom ``ghost-atoms''. Unselect the atom. Enable ghost atoms in the advanced options dialog of the ab initio setup window. Verify that the charge and multiplicity are correct in the options dialog.


next up previous
Up: Chemistry 3730 Fall 2000 Previous: Answer one of the
Marc Roussel
2000-12-12