Department of Chemistry and Biochemistry University of Lethbridge

Biochemistry 3300

University of Lethbridge

The Eight Steps of the Citric Acid Cycle

Enzymes:

- 4 dehydrogenases (2 decarboxylation)
- 3 hydration/dehydration
- 1 substrate level phosphorylation

Biochemistry 3300

Overall Reaction (TCA cycle)

Overall reaction

Citric acid cycle is central to the energy-yielding metabolism, but it <u>also produces 4- and 5-carbon precursors</u> for other metabolic pathways.

Replenishing (anaplerotic) reactions are needed to keep the cycle going!

TCA Cycle – Citrate Synthase

Rxn 1 Formation of Citrate by condensation of oxaloacetate and acetyl-CoA, catalyzed by citrate synthase.

Citroyl-CoA is formed as an intermediate

 Δ G'° has to be large to overcome the low oxaloacetate concentration

TCA Cycle – Citrate Synthase

Rxn 1 Structure of citrate synthase from *G. galus* mitochondria

 \rightarrow creates binding site for Acetyl-CoA

Structure of Citrate Synthase

Ordered sequential mechanism

University of

Rxn 1 Mechanism of citrate synthase reaction (1st step)

Formation of Enol Intermediate

The thioester linkage in acetyl-CoA activates the methyl hydrogens, and Asp³⁷⁵ abstracts a proton from the methyl group, forming an enolate intermediate.

The intermediate is stabilized by hydrogen bonding to and/or protonation by His²⁷⁴ (full protonation is shown).

University of

Rxn 1 Mechanism of citrate synthase reaction (2nd step)

α-keto addition (condensation)

University of

Rxn 1 Mechanism of citrate synthase reaction (3rd step)

Thioester hydrolysis

CoA-SH and producing citrate.

Rxn 1 Mechanism of citrate synthase reaction

The thioester linkage in acetyl-CoA activates the methyl hydrogens, and Asp³⁷⁵ abstracts a proton from the methyl group, forming an enolate intermediate.

The intermediate is stabilized by hydrogen bonding to and/or protonation by His²⁷⁴ (full protonation is shown).

oxaloacetate, with His²⁷⁴ positioned to abstract the proton it had previously donated. His³²⁰ acts as a general acid.

"Stabilized" enol intermediate of acetyl CoA attacks α -keto group of oxaloacetate.

Hydrolysis of citroyl-CoA intermediate drives reaction

The thioester is subsequently hydrolyzed, regenerating CoA-SH and producing citrate.

University of

Biochemistry 3300

TCA Cycle – Aconitase reaction

Rxn 2 Formation Isocitrate via cis-Aconitate

Aconitase dehydrates citrate to cis-aconitate ... then hydrates cis-aconitate to isocitrate

Hydroxyl moved from C3 to C2

TCA Cycle – Aconitase mechanism

Rxn 2 Mechanism of aconitase

Aconitase contains an iron-sulfur center

4Fe:4S center aids substrate binding and is required for catalytic addition / removal of H_2O .

Cis-aconitate intermediate does not (typically) dissociate from enzyme.

TCA Cycle – isocitrate dehyrogenase

Rxn 3 Oxidation decarboxylation of Isocitrate to α -ketoglutarate

Mn²⁺ in the active site interacts with the carbonyl group of intermediate oxalosuccinate and stabilizes the transiently formed enol.

Two different isocitrate DH₂ases : a NAD⁺ and a NADP⁺ dependent form. An NAD⁺ dependent form in the mitochondrial matrix An NADP⁺ dependent form in both the mitochondria and cytosol

TCA Cycle –

α-ketoglutarate dehyrogenase complex

University of

Rxn 4 Oxidation of α -ketoglutarate to succinyl-CoA and CO₂

The mechanism is identical to the pyruvate dehydrogenase reaction.

 $\begin{array}{l} \alpha \text{-ketoglutarate dehydrogenase complex is very similar to the} \\ \textbf{pyruvate dehydrogenase complex (homologs of E_1, E_2, and E_3).} \\ \text{It also contains TPP, E_2 bound lipoate, FAD, NAD and CoA.} \\ \text{E_3 is identical in both complexes.} \\ \hline \textbf{Specificity due to E1} \end{array}$

Biochemistry 3300

Rxn 5 Conversion of Succinyl-CoA to Succinate

 $\Delta G'^{\circ}$ = -2.9 kJ/mol

Energy of the thioester bond cleavage drives the formation of a phosphoanhydride bond in GTP. - (another) substrate level phosphorylation

- conversion of one high energy bond to another

<u>Step 1</u> Succinyl-CoA binds to the enzyme and a phosphoryl group replaces the CoA of succinyl-CoA

(substrate level phosphorylation)

Consume a high-energy thioester and create a high-energy acyl phosphate.

Rxn **5** Mechanism of succinyl-CoA synthetase

<u>Step 2</u>

Succinyl phosphate transfers phosphoryl group to His residue on the enzyme.

Consume a high-energy acyl phosphate and create a high-energy phosphohistidyl.

<u>Step 3</u> Phosphohistidyl enzyme transfers phosphoryl group to GDP

Consume a high-energy phosphohistidyl and create a high-energy phosphoanhydride.

GTP can be:

- 1) converted to ATP by nucleoside diphosphate kinase.
- 2) utilized by G-proteins and other GTPases

Rxn **5** Mechanism of succinyl-CoA synthetase

Biochemistry 3300

Slide 18

Succinyl-CoA synthetase Structure

Rxn 5 Structure of succinyl-CoA synthetase

Two subunits: α Subunit (32 kDa) His²⁴⁶ is phosphorylated

β Subunit (42 kDa) confers ATP/GTP specificity

Active site is at the Subunit interface → "power helices" facilitate phosphoryl group transfers

University of

PDBid 1SCU E.coli Slide 19

TCA Cycle – Succinate dehydrogenase (a.k.a Complex II)

Rxn 6 Oxidation of Succinate to Fumarate – Succinate dehydrogenase

Eukaryotic succinate dehydrogenase is tightly bound to the inner mitochondrial membrane; prokaryotes \rightarrow plasma membrane.

Succinate dehydrogenase is Complex II of Electron Transfer Chain

TCA Cycle – Succinate dehydrogenase (a.k.a Complex II)

Rxn 6 Oxidation of Succinate to Fumarate – Succinate dehydrogenase

Succinate dehydrogenase (or Complex II) contains several iron-sulfur centers that mediate the flow of electrons from succinate (via a covalently bound FAD to enzyme) to the electron transfer chain and finally to O_2 .

Malonate, an analog of succinate strongly inhibits succinate dehydrogenase

 \rightarrow not normally present in cells

TCA Cycle - Fumarase

University of Lethbridge

Step 7 Hydration of Fumarate to Malate – Fumarase

TCA Cycle -Malate Dehydrogenase

Step 8 Oxidation of Malate to Oxaloacetate – L-malate dehydrogen

 $\Delta G'^{\circ}$ = 29.7 kJ/mol

L-malate is oxidized to oxaloacetate

 \rightarrow equilibrium strongly favours substrate (L-malate)

Couple reaction with strongly favourable Citrate Synthase reaction to overcome unfavourable energetics

Energy Yields

Yield = ~32 ATP / glucose

Standard Conditions: 32 x 30.5 kJ/mol = 976 kJ/mol Combustion of glucose = 2,840 kJ/mol

Succinate	Number of ATP or reduced	Number of ATP
React	coenzyme directly formed	ultimately formed*
Glucose —→ glucose 6-phosphate	-1 ATP	-1
ructose 6-phosphate \longrightarrow fructose 1,6-bisphosphate	-1 ATP	-1
2 Glyceraldehyde 3-phosphate \longrightarrow 2 1,3-bisphosphoglycerate	2 NADH	3 or 5†
2 1,3-Bisphosphoglycerate \longrightarrow 2 3-phosphoglycerate	2 ATP	-2
2 Phosphoenolpyruvate \longrightarrow 2 pyruvate	-2 ATP	-2
2 Pyruvate \longrightarrow 2 acetyl-CoA	-2 NADH	-5
2 Isocitrate \longrightarrow 2 α -ketoglutarate	2 NADH	-5
2α -Ketoglutarate $\longrightarrow 2$ succinyl-CoA	2 NADH	-5
2 Succinyl-CoA \longrightarrow 2 succinate	-2 ATP (or 2 GTP)	-2
2 Succinate \longrightarrow 2 fumarate	-2 FADH ₂	-3
2 Malate \longrightarrow 2 oxaloacetate	2 NADH	- 5
otal		30-32

* This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

[†] This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19–27 and 19–28.

Summary of Enzyme Properties

Enzyme	EC Class	Mechanism	Inter	$\Delta G^{\prime o}$	Products
Pyruvate Dehydrogenase Complex	Oxidoreductase(E1)	TPP; α -keto deCO ₂	ylid; enol	-33	Acetyl CoA; NADH; CO ₂
	Transferase (E2)	Lipoate	Acyl lipoate		
	Oxidoreductase(E3)	$NAD+\toNADH$			
Citrate Synthase	Transferase	Condensation	enol; citroyl-CoA	-32	2C + 4C sugars \rightarrow 6C sugar
Aconitase	Lyase	Dehydration; Hydration	cis-aconitate; 4Fe●4S	+13	
Isocitrate Dehydrogenase	Oxidoreductase	Mn ²⁺ ; oxidative deCO ₂	β -keto CO ₂ ; enol	-8	NADH; CO ₂
α -ketoglutarate Dehydrogenase Complex	See PDC.	See PDC.	See PDC	-34	Succinyl CoA; NADH; CO ₂
Succinyl-CoA synthetase	Ligase	Phosphoryl transfer; SLP	Succinyl phosphate; phospho-His	-3	GTP(ATP)
Succinate Dehydrogenase	Oxidoreductase	$FAD\toFADH_2$	4Fe●4S	0	FADH ₂
Fumarase	Lyase	Hydration	carbanion; ???	-4	
Malate Dehydrogenase	Oxidoreductase	$NAD+\toNADH$		+30	NADH

Why is Oxidation of Acetate so Complicated?

It is a hub of intermediary metabolism; In aerobic organisms it serves in catabolic and anabolic processes. →amphibolic pathway

-oxidative catabolism -production of biosynthetic precursers.

Intermediates removed from the Cycle are replenished by anaplerotic reactions.

Under stady state conditions (normal) intermediate concentrations remain constant

Anaerobic bacteria (above) have an 'incomplete' TCA \rightarrow lack α -ketoglutarate dehydrogenase complex

Citric Acid Cycle in Anabolism

Regulation of the Citric Acid Cycle

University of

Mammals, allosteric regulation is complemented by covalent protein modification.

E₁ of PDH complex can be inactivated by phosphorylation
kinase that inactivates E1 is a subunit of the mammalian PDH complex

PDH kinase is allosterically activated by ATP

TCA Cycle is regulated at its 3 exergonic steps. Citrate synthase, isocitrate dehydrogenase and α -ketoglutarate dehydrogenase complex

Related Pathway - The Glyoxylate Cycle

In many organisms other than vertebrates, the glyoxylate cycle serves as mechanism for converting acetate to carbohydrate.

The glyoxylate cycle produces four-carbon compounds from acetate.

Lipid body

In plants, glyoxylate cycle enzymes are found in organelles → Glyoxysomes

Found in lipid rich seeds during germination, before glucose from photosynthesis is available.

Biochemistry 3300

Relationship Between the Glyoxylate And 1 Citric Acid Cycle

Coordinated Regulation

Sharing common intermediates requires coordinated regulation.

Isocitrate is at the branch point between the glyoxylate and TCA cycle

Isocitrate DH is also regulated by covalent modification (specific protein kinase)

E. coli has the full complement of enzymes and therefore grows on acetate as the sole carbon source.

University of