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Bioenergetics

Bioenergetics is the quantitative study of energy relationships and energy
conversion in biological systems.

Biological energy transformations obey the laws of thermodynamics.
1. You can’t win (1* Law) — For any physical or chemical change,
the total amount of energy in the universe remains constant.

2. You even can’t break even (2™ Law) — In all natural processes, the
entropy of the universe increases.
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Bioenergetics

Gibbs free energy, G — amount of energy capable of doing work
Enthalpy, H — the heat content of the reacting system

Entropy, S — quantitative expression for the randomness or disorder

in a system.
J/mol / K
}&G =AH-T AS\
J/mol J/mol - K
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Bioenergetics @
AG=AH-TAS

A process tend to occur spontaneously only if AG is negative

For any chemical reaction AG is a function of the
standard free-energy change AG °

[CI°[D]°
[A]" BT

AG=AG’+RTlIn
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Bioenergetics

Some physical constants and units

Boltzmann constant, k = 1.381 X 10723 J/K
Avogadro’s number, N = 6.022 X 1023 mol~1
Faraday constant, # = 96,480 J/V - mol
Gas constant, R = 8.315 J/mol - K
(= 1.987 cal/mol - K)

Units of AG and AH are J/mol (or cal/mol)
Units of AS are J/mol - K (or cal/mol - K)
1 cal = 4.184 ]

Units of absolute temperature, T, are Kelvin, K
25°C = 298 K
At 25 °C, RT = 2.479 kJ/mol
(= 0.592 kcal/mol)
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Bioenergetics

Changes of free-energy under standard conditions: AG’

298 K=25°C

101.3 kPa = 1 atm

=1M

( reactants and products) -

AG’ is directly related to the equilibrium constant Ke
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Lethbridge

ie. AG’ is the free energy change between
the standard state and the equilibrium state

q

AG’=-R Tin Keq

_ [Products]

[0 [Reactants]

[CI°[DI°

[A]"[BT’
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Bioenergetics @
.

For biological systems, we typically use transformed standard constants:

AG’? and K

q

Since biological systems typically maintain a steady state, the
concentrations of HZO, H*, and/or Mg2+ can be assumed to be invariant

and are incorporated into the constants AG’?, K’eq.

AG'°=-RTlIn K

q
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Free Energy of a Reaction

AG'°=-R TlIn K

q
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Starting with all

AG'° components at 1 m,
When K’eol is... AG”’is... the reaction . . .
K kJ/mol kcal/mol)*

& (kl/mol) (keal/mol) >1.0 negative proceeds forward
103 —4 7.1 —41 1.0 Zero is at equilibrium
102 —11.4 —9 7 <1.0 positive proceeds in reverse
101 —0., —1.4

1 0.0 0.0
10~1 9.7 1.4
1072 11.4 2.7
1073 17.1 4.1
_4 .
18_5 g;g 22 For every 10 fold change in K_,
10-6 34'2 8'2 AG changes by 5.7 kJ/mol

Biochemistry 3300
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Actual Free-Energy Changes

The actual free-energy changes depend on reactant and product concentrations.

Each chemical reaction has a characteristic standard free-energy change
(AG’°). Itis a constant!

AG’is a function of (reactant/product) concentration and the temperature.

0.0

AG' (kJ/moal)

[CI°[D)"
[A] [B]° a7

AG'=AG°+RTin

T =300
AG’°=-16.7 kJ/mol

The criterion for spontaneity of a reaction
Is AG’, not AG’° 03 | - | 100

[C]1(D] / [A][B]
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Sequential Reactions — Energy Coupling
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?

\

Sequential reactions sharing a common intermediate have their own
standard free-energy change. The standard free-energy values of a
sequential reaction are additive.

A—-B AG7’0

B_C AG ’° AG®’ =AG’°+AG’°
2 total 1 2

A—C AG1’0+AG;0

Energy coupling is valid means for understanding the energetics of :
1) elementary steps in an overall reaction and

2) for multiple steps in a metabolic pathway
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Sequential Reactions
Energy Coupling

AG) 9= _30.5 kJ/mol

Reaction 2:
ATP— ADP + P; Reaction 3:
4 it Glucose + ATP —
glucose 6-phosphate + ADP

Reaction 1:

Glucose + P;—
glucose 6-phosphate

Free energy, G

AG3 — AG1 + AGZ

AG ’° = 13.8 kJ/mol Reaction coordinate AG_’° =-16.7 kJ/mol
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Free-Energy Change
ATP Hydrolysis

Standard free energy of ATP hydrolysis is -30.5 kJ/mol.
But what about the actual free energy of ATP hydrolysis in the cell?

Example: Human erythrocytes

c(ATP) =2.25mM [ADP][P]
c(ADP) =0.25 mM AG =AG'°+R Tin '
c(P)  =1.65mM g [ATP]
AGp = -30.5kJ/mol + 8.315 J/mol-K - 298 K - In 1.8 x 10™
= -30.5 kJ/mol — 21 kJ/mol
= -51.5 kd/mol

AGp is called the phosphorylation potential
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Chemical Basis for
“High Energy” Compounds

ATP - Hydrolysis

NH,
phosphoester
bonds

phosphoanhydride
bondb k >
ST ‘
| i
O—'PT{J—P— Jr Py e R )
T R L 20 |
0] : O : 0O . H H i
| 5 . H |
i E LU
: : Adenosine
L J
N :
L . AMP )
ADP J

ATP
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resonance
@ stabilization

5~ TI3-

H'I'

1
DO—I—O—T—O— Rib | Adenine
0~ o ATP4~

9 hydrolysis,
with relief

of charge
repulsion

Rib |— Adenine

ADP2-
Slide 13



Chemical Basis for
“High Energy” Compounds

ATP - Hydrolysis

NH,
phosphoester
bonds

phosphoanhydride N \
bondb k >

T > Y

| 4 | ;
,_O—PT{J— S -“P-“O CH, )
Y n‘3 | 0 ;
: oo @y O i H HJ |
f | 5 . H H !
e He T
: : : Adenosine
I : L ]
1 1 N 1
: L . AMP )
L . ADP )'

ATP
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o o
HO—I|7|'—O—||1—0— Rib [ Adenine
<|)‘ (Ir ADP2-
@”ionization
o (o)
H* + 'O—I!l—o—lﬂ—o— Rib (— Adenine
clr <I)‘ ADP3"

ATP4~ + H,0 —> ADP 3" #+ P}~ + H*
AG'° ==30.5 kJ/mol
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Chemical Basis for
“High Energy” Compounds

ATP - Hydrolysis

NH,
phosphoester
bonds
phosphoanhydride
rbondb k >
o
_O—El’ioirt—oiPiO CH '
B L 20 i
(O O o | H H i
| | ! H I
| i E L HO OH J
| : : Adenosine
: ! L8 J
1 1 N 1
: L VAMP ]
L VADP )'
ATP

Biochemistry 3300
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P10
'O—IT—O—IT—O—II’—O— Rib H Adenine
O; 3 3 MgATP 2~
NP ° 9
Mg?
T 7
'O—I'i‘—O—IT—O— Rib | Adenine
(O (o8 MgADP"~
N 9
Mg

Formation of Mg~ complexes partially

shields the negative charges and influences

the conformation of the phosphate groups.
le. electrostatic shielding
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“High energy” bonds @
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"High energy" bonds can be represented by the symbol. AT
~P represents a phosphate group with a large negative AG of hydrolysis.

Compounds with “high energy bonds” are said to have high group
transfer potential.

Potentially, 2 ~P bonds can be cleaved, as 2 phosphates are released by
hydrolysis from ATP.

AMP~P~P > AMP~P + P, (ATP > ADP + P)
AMP~P > AMP + P, (ADP > AMP + P)

Alternatively:
AMP~P~P = AMP + P~P (ATP > AMP + PP)
P~P > 2P (PP, > 2P)
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Nucleotide Analogs

NH,
Artificial ATP analogs /N XN
have been designed < | )
that are resistant to olulo o N N

cleavage of the terminal = N |l |0 I
phosphate by | | -0

hydrolysis. O- O- O-

AMPPNP (ADPNP) ATP analog

Example: AMPPNP.

These analogs have been used to study the dependence of coupled
reactions on ATP hydrolysis.

Note: they have made it possible to crystallize an enzyme that catalyzes ATP hydrolysis
with an ATP analog at the active site.
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Inorganic polyphosphate

Many organisms store energy as inorganic polyphosphate, a chain
of many phosphate residues linked by phosphoanhydride bonds:

P~P~P~P~P...

- Hydrolysis of P, residues may be coupled to energy-dependent reactions.

University of

Lethbridge

‘:_

LAT

&

£

Depending on the organism or cell type, inorganic polyphosphate may

have additional functions.

- Example: reservoir for P, a chelator of metal ions, a buffer or a regulator.

In prokaryotes, polyphosphate kinase-1 (PPK1) catalyzes the addition of

phosphate to polyphosphate:

Mg**

ATP + ponPn

Biochemistry 3300

ADP + polyP AG’°=-20 kJ/mol
n+1
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Chemical Basis for
“High Energy” Compounds

Phosphoenolpyruvate (PEP) - Hydrolysis

(0] (0]
N7 H,0
/0 /P\ 2 /0 o /0
“0—C fo) o~ U ~0—C OH tautomenzatlon\ ~0—C o
\C/ hydrolysis } \C/ — \c//'
I Pi [ |
CH, CH> CH3
PEP Pyruvate Pyruvate
(enol form) (keto form)

PEP3~ + H,O — pyruvate” + P~
AG'° = -61.9 kJ/mol
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Chemical Basis for

“High Energy” Compounds .

1,3-Bisphosphoglycerate - Hydrolysis

o) 0
\P/
7N AL resonance
0] (0] o~ 0] OH o, .O
}\ 7/ \c/ \“(':‘7 stabilization
2CHOH i LI'.HOH H* CIHOH
| s | _’. |
3CH> CH> ~— CH»
I H,0 |
| 7 7
_ hydrolysi _ ionization  _
0—P=0 s 0= 0—P=0
(o o~ o
1,3-Bisphosphoglycerate 3-Phosphoglyceric acid 3-Phosphoglycerate

1,3-Bisphosphoglycerate®” + H,0 ——> 3-phosphoglycerate®™ + P73~ + H*
AG'° = —49.3 kJ/mol
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Chemical Basis for
“High Energy” Compounds

Phosphocreatine - Hydrolysis

CIOO-

o CH,
I H |
o—||=—N —C—N—CH3

0~ *NH,
Phosphocreatine

Phosphocreatine?*” + H,0 ——> creatine + P3~
AG'° =-43.0 kJ/mol
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Chemical Basis for
“High Energy” Compounds

Thioesters: Acetyl-CoA hydrolysis

Coenzyme A includes

B-mercaptoethylamine linked to the
B vitamin pantothenate, which is
linked to ppAp

The functional group is the thiol
(SH) of B-mercaptoethylamine.

Why does binding to CoA result in
“activation” of the respective component?

Biochemistry 3300

Coenzyme A
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| B-mercaptoethylamine

l pantothenate
2

ADP-3'-phosphate ~ © OH
"0—P—O
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Chemical Basis for
“High Energy” Compounds

Thioesters: Acetyl-CoA hydrolysis

/0
CH3—C\ Acetyl-CoA
S-CoA
f Extra stabilizati f
e
L H,O0 hydrolysis
N Oxygen
U] st ester Tl 5- CoASH
5 e /0 stabilization I 4,0 o
7] 3= = CHap CC
g el No—r L CH _c/ Acetic acid
§ hydrolysis AG for oxygen 3 \
L. ester hydrolysis OH
. A e
CH3—C\ + R—SH CH3—C\ + R—OH flkr"zatu)n
OH OH H*
(Oxygen) esters are stabilized by resonance 0%
) : Vs
structures not available to thioesters CH3—C{ Acetate
0%
resonance

stabilization

Acetyl-CoA + H,O0 —— acetate” + CoA + H*

AG'° ==31.4 kJ/mol
Biochemistry 3300
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Energy Ranking

AG’® cloo'
(kJ/moI) (kcal/mol) —col ﬁ—O—@ Phosphoenolpyruvate
o, o) CH

Phosphoenolpyruvate —61.9 —14.8 = \CI/
1,3-bisphosphoglycerate § -50} -

(— 3-phosphoglycerate + P)  —49.3 —11.8 e, E:OH 0—® ®

. - 25 Phosphocreatine

Phosphocreatine —43.0 —10.3 2 _ 0l i 2 Bisphosphoalycatate
ADP (— AMP + P) —32.8 —-1.8 —:‘
ATP (— ADP + P) —30.5 —7.3 - [Rib |-P)—(P) Q '
ATP (— AMP + PP) —45.6 —10.9 £ -30f ATP [t‘ﬂ"iﬁgg’
AMP (— adenosine + P) ~14.2 —3.4 5 E
PP. (— 2P, —19.2 —4.0 9\9 —208 / \ l:g::::;gz
Glucose 1-phosphate —20.9 —5.0 < Glycerol-(p)
Fructose 6-phosphate —15.9 —-3.8 Glucoses-(B) 6l
Glucose 6-phosphate —13.8 —3.3 —10§
Glycerol 1-phosphate —-9.2 —2.2
Acetyl-CoA —31.4 —17.5 ol P;

ATP has special roles in energy coupling & P, transfer.

AG of phosphate hydrolysis from ATP is intermediate among examples
below. ATP can thus act as a P, donor, & ATP can be synthesized by P,

transfer, e.g., from PEP.
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Group Transfer

ATP provides energy not by simple hydrolysis.

It is provided by group transfers. cloo- c|00'
HBﬁ_clH ATP  ADP + P; H3ﬁ_cl|.|
A reaction usually written as a one-step c|Hz + NH3 \ / > (|:H2
reaction may actually involve two steps. c|“2 ‘|3“2
C C
of \o_ o/ \NI_|2
Glutamate Glutamine
ATP NH;
ADP coo™
A phosphoryl group is transferred from HsN—CH
ATP to a substrate (here glutamate), then ® CIH2 ©) P;
the phosphoryl group is displaced by a |
reactant (here NH3) resulting in the release of P. c||-|2
| C
7\
0 o\/o
AN
o o
Why is that important? Enzyme-bound

glutamyl phosphate
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Role of "high energy" bonds:

* Energy transfer or storage
ATP, PP, polyphosphate, phosphocreatine

¢ Group transfer
ATP, Coenzyme A

¢ Transient signal
cyclic AMP

Biochemistry 3300

University of

Lethbridge

AT Ik
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Transient signals (eg. c/ @

cAMP (3', 5'-cylic AMP) is sterically constrained
by having a phosphate with ester linkages to 2
hydroxyls of the same ribose.

Hydrolysis of one of these linkages (in red),
converting CAMP to 5'-AMP is highly
spontaneous.

The lability of cAMP to hydrolysis makes it an
excellent transient signal.
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Why doesn’t ATP undergo @
spontaneous hydrolysis? N

Thermodynamics

“High-energy” bond hydrolysis is energetically favorable / spontaneous reaction.

Kinetics

While energetics are favorable, the large activation energy barrier associated
with the hydrolysis of many “high energy” bonds is very slow in the absence of
an enzyme catalyst (referred to as kinetic stability)

Kinetic stability is essential feature of “energy storage” molecules

* Rapid ATP hydrolysis in the absence of a catalyst would render ATP useless as an
energy storage molecule as it would fall apart before use

* Allows for ATP hydrolysis only when reaction is coupled to a useful cellular reaction
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Yet another class of reactions!

Redox reactions!
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Oxidation & Reduction @

Principles of electrochemistry:

When describing electron transfers, the oxidation and reduction
halves of the reaction can be considered separately.

Overall Reaction

Fe* +Cu®* «——— Fe”+CU

Half Reactions
Oxidation of ferrous ion (loss of an electron):

Fe”(reduced) — Fe*(oxidized) + e

Reduction of cupric ion (addition of an electron):
Cu*(oxidized) + e <+«———  Cu'(reduced)
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Reduction potential measures affinity
for electrons

University of
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The standard reduction potential, E° for any given redox pair

is referenced on the half-reaction:

Device for measuring emf

=

H; gas —

(standard
pressure)

Salt bridge
(KCl solution)

_ = —_ =
Reference cell of known Test cell containing
emf: the hydrogen 1M concentrations
electrode in which H, of the oxidized and
gas at 101.3 kPa is reduced species of
equilibrated at the the redox pair to
electrode with 1 m H* be examined

Biochemistry 3300

H +e — % H2

The reduction potential of a half-cell
depends on concentrations / activities
of the chemical species present

RT [el. acceptor]
E=E" - nF " [el. donor]
For T=298 K
0.026 V [el. acceptor]
E=E - In

n [el. donor]
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Standard Reaction Potentials
and Free-Energy Change

The flow of electrons make energy available:

The free-energy change of a redox reaction.

AG=-nFAE or AG°’=-nFAE"°

Example: .
Acetaldehyde + NADH + H" — Ethanol + NAD" AE’"=0.123V

AG°=-nFAE’°=-2(96.5kJ/V - mol)(0.123 v) = -23.7 kJ/mol
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Standard Reduction Potentials

Half-reaction E" (V)

30, + 2H* + 2e7 —> H,0 0.816

Fe3* + e — Fe?2™ 0.771

NO; + 2H* + 2e~ — NO, + H,0 0.421 pH =7.0

Cytochrome f (Fe3") + e~ — cytochrome f (Fe?™) 0.365 T=25 OC

Fe(CN)g* (ferricyanide) + e~ —— Fe(CN)g ™~ 0.36

Cytochrome a, (Fe**) + e~ —— cytochrome a, (Fe") 0.35

0, + 2H" + 2e- — H,0, 0.295

Cytochrome a (Fe3") + e~ — cytochrome a (Fe?™) 0.29

Cytochrome ¢ (Fe**) + e~ —— cytochrome ¢ (Fe?™) 0.254

Cytochrome ¢, (Fe**) + e~ —— cytochrome ¢, (Fe?™) 0.22

CytOChrome b (F63+) + e~ —— cytochrome b (F62+) 0.077 The electrochemical potential
Ubiquinone + 2H™ + 2e~ —— ubiquinol + H, 0.045 . . )
Fumarate?~ + 2H* + 2e~ ——> succinate?™ 0.031 for oxidation half reactions
2HT + 2e- —— H, (at standard conditions, pH 0) 0.000 : :
Crotonyl-CoA + 2H4’21L 2e~ —— butyryl-CoA —0.015 (reverse Of ertten reaCthnS)
Oxaloacetate?~ + 2H* + 2e~ —— malate?~ —0.166 has the same magnitude and
Pyruvate~ + 2H* + 2e~ — lactate™ —0.185 . .

Acetaldehyde + 2H" + 2e~ —— ethanol —0.197 OppOSIte sign

FAD + 2H" + 2e~ — FADH, —D.219*

Glutathione + 2H" 4+ 2e~ —— 2 reduced glutathione —0.23

S+ 2H" + 26 — H,§ —0.243

Lipoic acid + 2H™ 4+ 2e~ —— dihydrolipoic acid —0.29

NAD* + H* + 2e —— NADH —0.320

NADP* + H™ + 2e~ —— NADPH —0.324

Acetoacetate + 2H" + 2e~ —— [B-hydroxybutyrate —0.346

a-Ketoglutarate + CO, + 2H™ + 2e~ — isocitrate —0.38

2H* + 2e ——> H, (at pH 7) —0.414

Ferredoxin (Fe3*) + e~ — ferredoxin (Fe?™) —0.432
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Oxidation States of Carbon

Methane

Ethane
(alkane)

Ethene
(alkene)

Ethanol
(alcohol)

Acetylene
(alkyne)

Formaldehyde

Biochemistry 3300

Acetaldehyde
(aldehyde)

Acetone
(ketone)

Formic acid
(carboxylic
acid)

Carbon
monoxide

Acetic acid
(carboxylic
acid)

Carbon
dioxide

H .o:
H:C:C, .
H ..O.IH
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Some Coenzymes and Proteins Serve
as Electron Carriers

oo 1 i
~ ~
/ | \NHZ | | NH2 or | | NH2 + H+
\I:I. + N N
O——CH, O 2 |
S R A side R B side
0=P—0" H NADH
duced
| S ou (reduced)
| NH,
0=P—0" (NfN Adenine 1.0 Oxidized
| N N) 0.8 : (NAD+)
0——CH, _O 9 i
e
H H 5 063
NAD* H H 5 04l
(oxidized) 3 |
OH OH N < ool
In NADP* this hydroxyl group oo v S—
is esterified with phosphate. " 220 240 260 280 300 320 340 360 380

Wavelength (nm)

NAD+, Nicotinamide Adenine Dinucleotide,

. . Optical test?
is an electron acceptor in catabolic pathways. PY

University of
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NADP+/NADPH is similar except for Pi. The nicotinamide ring is
NADPH is e- donor in synthetic pathways. derived from the vitamin niacin.

Biochemistry 3300
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Flavoproteins and Flavin Nucleotides

isoalloxazine ring

— | o 1
CH; N H* + e
:@I X ONH \
CH; I\ll N’ko
e
HCOH
- on 370 &
HeoH 440 nm
HCIOH
CH,
FAD S
'0—I%=
""""" ? T NH,
“0—P=0 N A
s T
| N ‘)
CH, _O N
H H
H H
L OH OH

University of
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H &5 H
I . | o
CH3 NT H"+ e CH
ISOSEN NS
S
CH3 I\II N (o] CH, "|' T/j%o
R R H
FADH’ (FMNH")
(semiquinone)

FADH,, (FMNH,)

(fully reduced) 360nm

450 nm

Flavoproteins are enzymes that catalyze
redox reactions using either Flavin mono-
nucleotide (FMN) or flavin adenine
dinucleotide (FAD).

Flavin nucleotides undergo a shift in major
absorption bands on reduction.

Flavin adenine dinucleotide (FAD) and
flavin mononucleotide (FMN)

Biochemistry 3300
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