

Chapter 10: Hemoglobin

Voet & Voet: Pages 320-353

Hemoglobin Function

Larger aerobic (oxygen utilizing) organism require an O_2 transport system to deliver sufficient O_2 to tissues

- Dissolved O₂ diffusion is only sufficient for very small organisms or cells (< 1mm thick)
- O_2 solubility is too low (eg. ~0.1 mM in blood plasma) to support metabolism

Hemoglobin serves as the primary O₂ transporter in vertebrates

 Invertebrates may have a hemoglobin-based O₂ transport system or an alternative system based upon either hemocyanin or hemerythrin

 O_2 binding to Hemoglobin increases the amount of O_2 in solution enough to support metabolism

Heme

Myoglobin and each subunit of hemoglobin bind a single heme group

- gives rise to characteristic red color of blood
- site of O_2 binding
- same group that is present in cytochromes and catalases

Heme is a porphyrin derivative containing 4 pyrrole rings linked by methylene bridges and an Fe atom

- Technically, the heme of hemoglobin is 'protoporphyrin IX' with a bound ferrous (Fe²⁺) ion
- Fe generally remains in the 2⁺ oxidation state regardless of O₂ binding

Quantifying Binding

Reversible binding of a protein (P) and ligand (L) can be described by an equilibrium expression characterized by an equilibrium association constant, $K_a(M^{-1})$

• In cells, the [ligand] is typically far larger than [protein]

 $P + L \rightarrow PL$

$$K_a = \frac{[PL]}{([P][L])}$$

Equilibrium can be expressed as the fraction of ligand binding sites occupied by ligand

$$\theta = \frac{(binding \ sites \ occupied)}{(total \ binding \ sites)} = \frac{[PL]}{([PL]+[P])}$$

Substituting K_a [L][P] for [PL] and rearranging

$$\theta = \frac{(K_a[L][P])}{(K_a[L][P] + [P])} = \frac{(K_a[L])}{(K_a[L] + 1)} = \frac{[L]}{([L] + \frac{1}{K_a})}$$

Determining K_a (or K_d)

Plotting θ versus [L] yields a hyperbolic curve

• At θ = 0.5; the equilibrium equation yields [L] = (1/K_a)

 $\boldsymbol{\theta}$ can be followed spectroscopically by detecting conformation differences associated with ligand binding

K_d; the dissociation constant is the reciprocal of K_a and is often used in its place Why?

- a) the equilibrium equation is (slightly) simplified
- b) units are concentration

Oxygen binding to myoglobin

Must modify (slightly) equilibrium binding equation as O, is a gas

- Partial oxygen pressure (pO₂) is easier to measure than dissolve oxygen concentration ([O₂])
- P_{50} is the concentration at which half the binding sites are filled (K_d)

$$\theta = \frac{[L]}{([L] + K_d)} = \frac{pO_2}{(pO_2 + K_d)} = \frac{pO_2}{(pO_2 + P_{50})}$$

Partial pressure of O₂ is pressure of O₂ above solution

O₂ binds tightly to myoglobin with a P₅₀ of 0.26 kPa (Note: oxygen is ~21% of the 101.3 kPa gas pressure)

Hemoglobin

- Myoglobin: Comparatively insensitive to small changes in physiological [O₂]
 - Suited to storage
 - O₂ bound under physiological conditions
- Hemoglobin (Hb) is an $\alpha_2^2\beta_2^2$ oligomer and a homologue of myoglobin
 - It carries almost all oxygen in animals
- Interaction between the Hb subunits modulate its binding affinity allowing it to respond to small changes in physiological [O₂]
 - Suited for oxygen transport
 - Binds/Releases O₂ under physiological conditions

Cooperativity

X-ray analysis show Hb exists in two states

- R (relaxed) state with high affinity for O₂
- T (tense or taut) state with low affinity for O₂

Low [O₂] favors the T state

- Requirement for O₂ release at sites needing oxygen
- Binding of O₂ to one of the Hb sites triggers a conformational change to the R state
- Allows all four sites to rapidly fill at higher [O₂]

Cooperativity – binding at one site alters the affinity of <u>similar sites</u> of other subunits

Cooperativity and Hb function

pO₂ in the lungs is ~13.3 kPa and in tissue is ~4 kPa

Proteins with hyperbolic binding curves bind O₂ efficiently in the lungs but do not efficiently release it in tissue

Cooperative proteins have sigmoidal binding curves

• Arises from low affinity binding at low pO₂ and higher affinity binding at high pO₂

- < 4 kPa, Hb is largely in the T-state and deoxygenated (less than 0.5 fractional saturation)
- > 4 kPa, the T to R-state transition results in Hb rapidly filling with O₂ (~0.9 fractional saturation at 8 kPa)

> 10 kPa, Hb is saturated with O_{2}

Note: Complete release of O_2 would be more efficient (ie. At 4kPa) BUT organisms may not be able to survive brief O_2 starvation

Allosteric proteins

Allosteric proteins bind ligands at one site, undergo a conformational change and the binding properties of another site on the same protein are altered

- Cooperative proteins (*eg* Hb) are a special case of allosteric proteins
- All cooperative proteins are allosteric, but not all allosteric proteins are cooperative

Ligands that induce conformational changes in allosteric proteins are referred to as modulators

- Modulators may be *inhibitors* (induce less-active forms) or *activators* (induce more-active forms)
- Homotropic modulators are modulators that are identical to the ligand occur in cooperative proteins (eg. O, is a homotropic activator of hemoglobin)
- *Heterotropic* modulator are different from the normal ligand (eg. 2,3-bisphosphoglycerate is a heterotropic inhibitor of hemoglobin)

Cooperativity cartoon

- Cooperative binding of oxygen was first studied by Hill (1910)
- For a protein with n binding sites, the previously discussed equilibrium expressions are:

Hill equation

The fractional occupancy equilibrium expression can be rearranged and converted to a linear form by taking the log of each side:

$$\frac{\theta}{(1-\theta)} = \frac{[L]^n}{K_d} \qquad \log\left(\frac{\theta}{(1-\theta)}\right) = n\log[L] - \log K_d$$

Plotting log (θ /(1 – θ)) vs log [L] is called the Hill plot

• The slope of the Hill plot *n* (Hill coefficient), reflect the degree of interaction between binding sites and is represented as n_{μ}

(Note: n_{μ} only equals *n* if all ligands bind at the same instant)

 n_{μ} values range from > 0 to the total number of binding sites, n.

Hill coefficient

- n_н < 1 negative cooperativity (very rare)
- n_H = 1 no cooperativity (typical)
- n_H > 1 positive cooperativity (common)
- n_H = n complete cooperativity (never)

Note1: We must modify the equation for Hb by substituting pO_2 for [L] and P_{50}^{n} for K_d before plotting the data

Note2: Pⁿ₅₀ occurs at y=0

Cooperativity models

Two models proposed to explain cooperative binding

- (1) Concerted model all subunits undergo the conformational change simultaneously
- (2) Sequential model subunit undergo the conformational change one at a time
- Difficult to distinguish between the models as the concerted model is a special case of the sequential model (not mutually exclusive)
 - The sequential model becomes the concerted model if the conformational change is sufficiently fast

Hb also transports CO_2 and H⁺

Hb transports CO₂ from tissues to the lungs and kidneys

Since CO₂ is poorly soluble in water, some is hydrated to HCO₃⁻ by carbonic anhydrase in a reaction that produces H⁺

Hb transports 40% of the H⁺ and ~20% of the CO₂ formed in tissues

Binding* of H⁺ (Bohr effect) and CO₂ are inversely related (inhibitory) to the binding of O₂

At low pH and high CO_2 , the binding of H⁺ and CO_2 aid in the release of O_2

Conversely in the capillaries of the lungs, CO₂ is released and the pH rises increasing Hb affinity for O₂

The Bohr effect (modulation of Hb binding) is an important additional factor explaining why Hb (cooperative) is better suited as an oxygen carrier than Myoglobin

CO_2 / H⁺ and Hb

Complete equilibrium expression for Hb is more formally written as

 HHb^+ + O_2 \leftarrow HbO_2 + H^+

 H^{+} protonates His146 of Hb (β subunit) in the T state

- This residue is at the interface between subunits and is directly involved in the Hb T to R state transition
- Protonated His146 forms a salt bridge with Asp94 stabilizing the T state

Several other residues can be protonated with similar effects

CO₂ carbamylates the neutral amino terminal groups of Hb when CO₂ levels are high

• This reaction releases H⁺ and contributes to the Bohr effect

Heterotrophic modulators

2,3-bisphosphoglycerate (BPG) is a heterotrophic modulator of Hb

- BPG binds at a site distant from the O₂ binding site and greatly <u>reduces</u> the affinity of Hb for O₂ under high CO₂ levels
- Leads to increased release of O₂ compared to normal conditions

eg At high altitudes, pO_2 and the fraction saturation of Hb is lower and less O_2 is released to tissues

After several hours, BPG binding to Hb promotes release of O₂ at low pO₂ and restores normal levels of oxygen to tissues
1.0

Summary

Hb reversibly binds O_2^2 , H⁺ and the heterotrophic regulator BPG

Hb covalently binds CO₂

Each of these ligands and CO_2 affect Hb binding affinity for O_2 by stabilizing either the T or R states