

Chapter 10: Hemoglobin

Voet & Voet: Pages 320-353

Hemoglobin Function

Larger aerobic (oxygen utilizing) organism require an O² transport system to deliver sufficient O² to tissues

- **•** Dissolved O₂ diffusion is only sufficient for very small organisms or cells **(< 1mm thick)**
- O₂ solubility is too low (eg. ~0.1 mM in blood plasma) to support metabolism

Hemoglobin serves as the primary O² transporter in vertebrates

● **Invertebrates may have a hemoglobin-based O² transport system or an alternative system based upon either hemocyanin or hemerythrin**

O2 binding to Hemoglobin increases the amount of O² in solution enough to support metabolism

Heme

Myoglobin and each subunit of hemoglobin bind a single heme group

- **gives rise to characteristic red color of blood**
- **site of O² binding**
- **same group that is present in cytochromes and catalases**

Heme is a porphyrin derivative containing 4 pyrrole rings linked by methylene bridges and an Fe atom

- **Technically, the heme of hemoglobin is 'protoporphyrin IX' with a bound ferrous (Fe2+) ion**
- **Fe generally remains in the 2⁺ oxidation state regardless of O² binding**

Quantifying Binding

Reversible binding of a protein (P) and ligand (L) can be described by an equilibrium expression characterized by an equilibrium association constant, K^a (M-1)

● **In cells, the [ligand] is typically far larger than [protein]**

 $P + I$ \leftarrow P

$$
K_a = \frac{[PL]}{([P][L])}
$$

Equilibrium can be expressed as the fraction of ligand binding sites occupied by ligand

$$
\theta = \frac{(binding\,sites\,occupied)}{(total\,binding\,sites)} = \frac{[PL]}{([PL]+[P])}
$$

Substituting K^a [L][P] for [PL] and rearranging

$$
\theta = \frac{(K_a[L][P])}{(K_a[L][P]+[P])} = \frac{(K_a[L])}{(K_a[L]+1)} = \frac{[L]}{([L]+ \frac{1}{K_a})}
$$

Determining K_a (or K_d)

Plotting θ **versus [L] yields a hyperbolic curve**

At θ = 0.5; the equilibrium equation yields [L] = (1/K_a)

θ **can be followed spectroscopically by detecting conformation differences associated with ligand binding**

K_d; the dissociation constant is the reciprocal of K_a and is often used in its place Why?

- **a) the equilibrium equation is (slightly) simplified**
- **b) units are concentration**

Oxygen binding to myoglobin

Must modify (slightly) equilibrium binding equation as O² is a gas

- **Partial oxygen pressure (pO²) is easier to measure than dissolve oxygen concentration ([O²])**
- \quad $\mathsf{P}_{_{50}}$ is the concentration at which half the binding sites are filled (K $_{_{\text{d}}}$)

$$
\theta = \frac{[L]}{([L]+K_d)} = \frac{pO_2}{(pO_2 + K_d)} = \frac{pO_2}{(pO_2 + P_{50})}
$$

Partial pressure of O² is pressure of O² above solution

 O_{2} binds tightly to myoglobin with a P_{50} of 0.26 kPa **(Note: oxygen is ~21% of the 101.3 kPa gas pressure)**

University of Lethbridge

Hemoglobin

- **Myoglobin: Comparatively insensitive to small changes in physiological [O²]**
	- **Suited to storage**
	- **O² bound under physiological conditions**
- Hemoglobin (Hb) is an $\alpha_{_2} \beta_{_2}$ oligomer and a **homologue of myoglobin**
	- **It carries almost all oxygen in animals**
- **Interaction between the Hb subunits modulate its binding affinity allowing it to respond to small changes in physiological [O²]**
	- **Suited for oxygen transport**
	- **Binds/Releases O² under physiological conditions**

Cooperativity

X-ray analysis show Hb exists in two states

- **R** (relaxed) state with high affinity for O₂
- \top (tense or taut) state with low affinity for O^2

Low [O²] favors the T state

- **Requirement for O² release at sites needing oxygen**
- **Binding of O² to one of the Hb sites triggers a conformational change to the R state**
- **Allows all four sites to rapidly fill at higher [O²]**

Cooperativity – binding at one site alters the affinity of similar sites of other subunits

Cooperativity and Hb function

pO² in the lungs is ~13.3 kPa and in tissue is ~4 kPa

● **Proteins with hyperbolic binding curves bind O² efficiently in the lungs but do not efficiently release it in tissue**

Cooperative proteins have sigmoidal binding curves

● **Arises from low affinity binding at low pO² and higher affinity binding at high pO²**

- **< 4 kPa, Hb is largely in the T-state and deoxygenated (less than 0.5 fractional saturation)**
- **> 4 kPa, the T to R-state transition results in Hb rapidly filling with O² (~0.9 fractional saturation at 8 kPa)**

> 10 kPa, Hb is saturated with O²

Note: Complete release of O² would be more efficient (ie. At 4kPa) BUT organisms may not be able to survive brief O² starvation

Allosteric proteins

Allosteric proteins bind ligands at one site, undergo a conformational change and the binding properties of another site on the same protein are altered

- **Cooperative proteins (***eg* **Hb) are a special case of allosteric proteins**
- **All cooperative proteins are allosteric, but not all allosteric proteins are cooperative**

Ligands that induce conformational changes in allosteric proteins are referred to as modulators

- **Modulators may be** *inhibitors* **(induce less-active forms) or** *activators* **(induce moreactive forms)**
- *Homotropic* **modulators are modulators that are identical to the ligand occur in cooperative proteins (eg. O² is a homotropic activator of hemoglobin)**
- *Heterotropic* **modulator are different from the normal ligand (eg. 2,3 bisphosphoglycerate is a heterotropic inhibitor of hemoglobin)**

Cooperativity cartoon

- **Cooperative binding of oxygen was first studied by Hill (1910)**
- **For a protein with n binding sites, the previously discussed equilibrium expressions are:**

Hill equation

The fractional occupancy equilibrium expression can be rearranged and converted to a linear form by taking the log of each side:

$$
\frac{\theta}{(1-\theta)} = \frac{[L]^n}{K_d} \qquad \log\left(\frac{\theta}{(1-\theta)}\right) = n\log[L] - \log K_d
$$

Plotting log (θ **/ (1 –** θ **)) vs log [L] is called the Hill plot**

● **The slope of the Hill plot** *n* **(Hill coefficient), reflect the degree of interaction between binding sites and is represented as** *n H*

(Note: $n_{\!\scriptscriptstyle H}$ only equals n if all ligands bind at the same instant)

n H **values range from > 0 to the total number of binding sites, n.**

Hill coefficient

- $n_{\scriptscriptstyle H}$ **< 1 negative cooperativity (very rare)**
- $n_{\scriptscriptstyle H}$ **no cooperativity (typical)**
- *n H* **> 1 positive cooperativity (common)**
- *n H* **= n complete cooperativity (never)**

Note1: We must modify the equation for Hb by substituting $\textrm{pO}_\textrm{2}$ for [L] and P₅₀ⁿ for K_d before plotting the data

Note2: Pⁿ 50 occurs at y=0

Cooperativity models

Two models proposed to explain cooperative binding

- **(1) Concerted model all subunits undergo the conformational change simultaneously**
- **(2) Sequential model subunit undergo the conformational change one at a time**
- **Difficult to distinguish between the models as the concerted model is a special case of the sequential model (not mutually exclusive)**
	- **The sequential model becomes the concerted model if the conformational change is sufficiently fast**

Hb also transports CO₂ and H⁺

Hb transports CO² from tissues to the lungs and kidneys

Since CO₂ is poorly soluble in water, some is hydrated to HCO₃ by **carbonic anhydrase in a reaction that produces H⁺**

Hb transports 40% of the H⁺ and ~20% of the CO 2 formed in tissues

Binding* of H⁺ (Bohr effect) and CO² are inversely related (inhibitory) to the binding of O²

At low pH and high CO₂, the binding of H⁺ and CO₂ aid in the release of O₂

Conversely in the capillaries of the lungs, CO² is released and the pH rises increasing Hb affinity for O²

The Bohr effect (modulation of Hb binding) is an important additional factor explaining why Hb (cooperative) is better suited as an oxygen carrier than Myoglobin

$CO₂$ / H⁺ and Hb

Complete equilibrium expression for Hb is more formally written as

 $HHb^+ + O_2 \implies HbO_2 + H^+$

H⁺ protonates His146 of Hb (β subunit) in the T state

- This residue is at the interface between subunits and is directly involved in the Hb T to R **state transition**
- **Protonated His146 forms a salt bridge with Asp94 stabilizing the T state**

Several other residues can be protonated with similar effects

CO 2 carbamylates the neutral amino terminal groups of Hb when CO² levels are high

● **This reaction releases H⁺ and contributes to the Bohr effect**

Heterotrophic modulators

2,3-bisphosphoglycerate (BPG) is a heterotrophic modulator of Hb

- **BPG binds at a site distant from the O 2 binding site and greatly reduces the affinity of Hb for O² under high CO² levels**
- **Leads to increased release of O² compared to normal conditions**

eg **At high altitudes, pO² and the fraction saturation of Hb is lower and less O 2 is released to tissues**

 $-$ After several hours, BPG binding to Hb promotes release of O₂ at low pO₂ and **restores normal levels of oxygen to tissues** $1.0 -$

Summary

Hb reversibly binds O² , H⁺ and the heterotrophic regulator BPG

Hb covalently binds CO₂

Each of these ligands and CO² affect Hb binding affinity for O 2 by stabilizing either the T or R states