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1 Introduction

In our earlier discussion of stability analysis, we emphasized the significance of the eigenvalues of
the Jacobian matrix. What of the eigenvectors?

Let us briefly recall why the Jacobian is important. In the vicinity of an equilibrium point x∗ of
the autonomous ordinary differential equation (ODE)

ẋ = f(x), (1)

provided that none of the eigenvalues are zero, the differential equation can be approximated by

δ̇x = J∗ δx, (2)

where δx = x−x∗, and J∗ is the Jacobian evaluated at x∗. J∗ is a constant, so equation 2 is a linear
ordinary differential equation. The solutions of this equation can be written in the form

δx(t) = ∑cieie
λit ,

where ei are the right eigenvectors and λi the corresponding eigenvalues of J∗, and ci are some
coefficients chosen to satisfy the initial conditions. The eigenvalues therefore tell us something
about how fast we approach or recede from the equilibrium point, and the eigenvectors tell us
something about the directions along which this motion will occur.

To see this more clearly, consider a very simple example: Suppose that the equilibrium point
is stable, i.e. that all the eigenvalues are negative, and that λ1 is much smaller than any of the other
eigenvalues in absolute value. Then the terms involving eλit for i > 1 decay much faster than eλ1t so
that, eventually, δx(t) → c1eλ1te1. Geometrically, this corresponds to approach to the equilibrium
point along e1, the “slow” eigenvector.

That’s nice, but what happens farther away from equilibrium, where equation 2 is no longer
valid? Can we extend the linear picture away from the equilibrium point? In a way, the answer is
yes, but the extension requires several new ideas, and of course some new and highly interesting
complications arise.
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2 Flow dynamics away from the equilibrium point

Suppose that x1 is an arbitrary point in the phase space of equation 1, and x2 is a second point close
to x1. Let δx be the vector connecting x1 to x2, i.e.

δx = x2 −x1.

The evolution in time of δx is therefore given by

δ̇x = ẋ2 − ẋ1 = f(x2)− f(x1) = f(x1 +δx)− f(x1).

We can Taylor expand f(x1 +δx) about δx = 0:

f(x1 +δx) = f(x1)+J1δx+ . . .

Here, J1 is the Jacobian evaluated at x1. To lowest order, the difference vector δx therefore obeys
the differential equation

δ̇x ≈ J1δx. (3)

This looks an awful lot like the linearized equation for evolution near the equilibrium point. There’s
a major difference however. If we have two systems governed by the differential equation 1, they
both move through phase space as time unfolds. Thus, the Jacobian matrix in equation 3 changes
as time goes on, except in the special case of linear differential equations. The eigenvectors and
eigenvalues therefore also change, so we have to be careful in interpreting the eigenvector decom-
position of J1. Nevertheless, we can say that locally, we will observe convergence or divergence
of trajectories either toward or away from each other at rates controlled by the eigenvalues of J1

and along the directions indicated by its eigenvectors.
Now suppose that we start very close to the equilibrium point on one of the eigenvectors. (For

the sake of argument, consider the case of a real eigenvector corresponding to a unique eigen-
value.) If we follow this eigenvector backward in time (i.e. evolve the point under the action of the
dynamical system ẋ = −f(x)), it will trace out a trajectory which, run forward in time, runs into
the equilibrium point along the specified eigenvector. As long as the eigenvalue spectrum1 doesn’t
change in any important way (eigenvalues don’t change order, change signs, become complex,
etc.), the trajectories near this “eigentrajectory” will behave much as they did near the correspond-
ing eigenvector in the vicinity of the equilibrium point. The extension of the slow eigenvector of
a stable equilibrium point should, for instance, attract nearby trajectories faster than systems move
along it.

We can generalize the picture given above for trajectories which extend single eigenvectors to
cover the case of sets of trajectories which extend several eigenvectors with a given property. The
extension of a pair of eigenvectors would be a surface, the extension of three eigenvectors would
be a three-dimensional hypersurface, and so on. These extensions, which are called invariant
manifolds, turn out to be theoretically quite important. Here are some formal definitions:

1This is exactly what it sounds like: the collection of all the eigenvalues. It’s called a spectrum because we
sometime image it by drawing a line at the value of (e.g.) the real part of each eigenvalue. If there’s more than one
eigenvalue with the same real part, we draw twice as tall a line.
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Definition 1 A differentiable manifold is a continuously and smoothly parameterizable geometric
object. In other words, it is a geometric object for which it is possible to establish a system under
which every point within the object can be labeled with a unique identifier (e.g. coordinates), and
for which the labels vary continuously and smoothly as we move across the object.

Comment 1 The word “smooth” implies that the parameterization of a differentiable manifold
has at least a few continuous derivatives. I’m trying to avoid getting too ridiculously technical,
so I’m being deliberately vague about exactly how many continuous derivatives are enough to
make a function smooth. In general in what follows, every function we see will have at least two
continuous derivatives.

Comment 2 Since differentiable manifolds are continuously parameterizable, then in any given
smooth coordinate system (e.g. in our phase-space coordinates), it is possible to express the mani-
fold locally (i.e. in some neighborhood of any specified point) as the graph of a function. In other
words, if we have a d-dimensional manifold in an n-dimensional space, then at every point in the
manifold, we can write

z = h(y),

where y is a set of d of the coordinates in our space, h is a differentiable function of d variables,
and z is the remaining set of n−d coordinates. Because this is only guaranteed locally, we might
have to use a different set of variables y and a different h in different parts of the manifold.

Definition 2 An invariant set is any set of points in a dynamical system which are mapped into
other points in the same set by the evolution operator.

Example 2.1 Any equilibrium point or set of equilibrium points is an invariant set since each of
these points is mapped into itself by the evolution operator.

Example 2.2 A trajectory is an invariant set because each point in the trajectory evolves into
another point in the same trajectory under the action of the evolution operator.

Definition 3 An invariant manifold is exactly what it sounds like: an invariant set that happens
to be a differentiable manifold.

Example 2.3 A single equilibrium point is an invariant manifold: It’s clearly invariant, and it’s a
trivial (zero-dimensional) manifold. A set of equilibrium points on the other hand is not an
invariant manifold because it lacks continuity.
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Figure 1: Sketch of a two-dimensional invariant manifold produced by the prescription of example
2.4. The initial curve is shown in bold. This is an arbitrary smoothly parameterizable curve. The
dotted curve connects points corresponding to the same time t along each of the trajectories. Each
point on the manifold can be labeled by a pair of values: The distance along the initial curve from
which the trajectory was started, and the time along the trajectory.
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Example 2.4 Suppose that we draw a smooth curve in phase space which we can parameterize in
some way, e.g. by distance from the end of the curve where we started drawing. We then take
each point on this curve as the initial condition for the differential equation 1 and compute
trajectories for all of these initial conditions. (Obviously, we can’t do this in practice since
there are an infinite number of points on the curve. . . ) Figure 1 shows a sketch of what
we might get. Provided the vector field is smooth, connecting points corresponding to the
same point in time along each trajectory will generate a smooth curve. We therefore have a
geometric object which is invariant, since trajectories are individually invariant, and which
can be smoothly parameterized by the distance from the end of our curve at which we started
the trajectory and by the time along the trajectory. The result is therefore a two-dimensional
invariant manifold, which is just a piece of a two-dimensional surface in phase space.

Since invariant manifolds are differentiable manifolds, then at each point in a d-dimensional
manifold we can write

z = z(y),

where, again, y is a set of d of the phase-space coordinates, and z represents the remaining n− d
coordinates. Take a time derivative of this equation with respect to time. According to the chain
rule,

dz
dt

=
d

∑
i=1

∂z
∂yi

dyi

dt
.

The time derivatives are just the rate equations of our dynamical system. Since we are, for the
moment, only considering autonomous ODEs, these rates only depend on x ≡ ∪{y,z}, so this
equation is a partial differential equation for z(y). This very important equation is known in dy-
namical systems theory as the manifold equation. We shall return to it shortly.

3 Special eigenspaces of equilibrium points

The idea of extending eigenvectors into invariant manifolds will only be useful if we can locate sets
of eigenvectors and, by extension, invariant manifolds, which have interesting properties. Based
on our knowledge of linearized stability analysis, the following three eigenspaces (subspaces of
the full phase space spanned by eigenvectors) are obvious candidates:

Definition 4 The stable eigenspace Es is the space spanned by the eigenvectors whose corre-
sponding eigenvalues have negative real parts.

Definition 5 The unstable eigenspace Eu is the space spanned by the eigenvectors whose corre-
sponding eigenvalues have positive real parts.

Definition 6 The centre eigenspace Ec is the space spanned by the eigenvectors whose corre-
sponding eigenvalues have a real part of zero.

Comment 3 Complex eigenvectors and their eigenvalues come in complex-conjugate pairs (iden-
tical real parts and imaginary parts of opposite sign). In this case, the appropriate eigenspace is
spanned by the real and imaginary parts of the vector.
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The following examples illustrate the importance of these eigenspaces in understanding the
flow near an equilibrium point.

Example 3.1 Suppose that an equilibrium point in a three-dimensional system has a pair of complex-
conjugate eigenvalues with negative real parts, and a positive eigenvalue. Then the flow near
the equilibrium point has to look qualitatively as follows:

Es

Eu

Eu is, in this case, just the unstable eigenvector. Any system on Eu will escape the equi-
librium point along this vector. Trajectories which start in the stable eigenspace E s spiral
down to the equilibrium point. Trajectories which start in neither eigenspace will execute a
motion which is a combination of the two: They spiral toward Eu while moving away from
the equilibrium point along this vector. (Think of a corkscrew around Eu, and you’ll have a
fair picture of what happens to these trajectories. Note that, eventually, and neglecting the
fact that we are moving away from equilibrium into a region where things might get more
complicated, the motion corresponding to the stable spiral will bring the system onto the
unstable eigenspace so that the latter represents the long-term evolution of the system.

Example 3.2 Suppose that an equilibrium point has two eigenvalues with zero real parts and that
all the rest are negative. A three-dimensional picture of the flow near the equilibrium point
might look as follows:
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Es

Ec

Any trajectory which starts off the centre manifold Ec is taken there along a path roughly
parallel to Es. Accordingly, the flow eventually lies in the centre eigenspace. Note that we
can’t say exactly what happens when systems reach this eigenspace, which is why I didn’t
draw any trajectories on Ec. This means however that the problem of analyzing the behavior
in a high-dimensional space has now been reduced to the simpler problem of analyzing the
motion on a two-dimensional surface.

4 Some important classes of invariant manifolds

Since invariant manifolds are just extensions of eigenspaces, they have similar names, with similar
meanings. The following technical definitions can be given for the stable and unstable manifolds:

Definition 7 The stable manifold W s of an equilibrium point P is a set of points in phase space
with the following two properties:

1. For x ∈W s, ϕt(x) → P as t → ∞.

2. W s is tangent to Es at P .

Definition 8 The unstable manifold W u of an equilibrium point is a set of points in phase space
with the following two properties:

1. For x ∈W u, ϕt(x) → P as t →−∞.

2. W u is tangent to Eu at P .

Comment 4 It is possible to generalize the definitions of stable and unstable manifolds to arbi-
trary attractors, and not just equilibria.
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Comment 5 Note that in both of the above definitions, we talk of manifolds of an equilibrium
point. Each equilibrium point or, in general, attractor of a dynamical system, will have its own
set of manifolds. It is, technically, meaningless to speak of the stable or unstable manifold without
specifying which attractor it belongs to, although people sometimes do that, letting the reader infer
from context exactly what is meant.

Comment 6 Note that the above definitions don’t invoke the properties of invariance or of differ-
entiability directly. However, stable and unstable manifolds defined this way must be invariant,
differentiable manifolds. I’ll let you think about that one.

The definition of a centre manifold is trickier. We want this manifold to become tangent to the
centre eigenspace near the equilibrium point, but we don’t know how the system behaves in the
centre manifold any more than we knew what was supposed to happen in the centre eigenspace, so
we can’t use stability to define this manifold as we did with the stable and unstable manifolds.

Definition 9 The centre manifold of an equilibrium point P is an invariant manifold of the differ-
ential equations with the added property that the manifold is tangent to E c at P .

This is a weaker definition than those of the stable and unstable manifolds. Accordingly, the centre
manifold is not unique. To see why this is, consider the following sketch of the flow for a planar
system with a stable and a centre manifold:

E s

E c

The stable manifold is the unique trajectory which runs into the stable eigenspace. However, our
definition allows any of the other trajectories to be called a centre manifold: They are invariant
manifolds since they are trajectories, and they all become tangent to E c as they approach the
equilibrium point. That being said, they all collapse onto a particular trajectory, which is shown
here as being identical to Ec but which could curve away from this line. In some sense, the other
trajectories are “ordinary” centre manifolds while the central one is “The Centre Manifold”. The
problem with the classical definition given above is that it applies generally to systems with any
manifold structure. However, the centre manifold is mostly useful in systems in which there are
no eigenvalues with positive real parts, i.e. in systems with no unstable eigenspace. If there is an
unstable eigenspace, the equilibrium point is unstable, and it probably doesn’t matter that there are
zero eigenvalues. However, as argued earlier, if the system only has stable and centre eigenspaces,
then all the interest is on the behavior in the centre eigenspace.
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Let us therefore consider the case which interests us most. Suppose that none of the eigenval-
ues of the Jacobian matrix of an equilibrium point have positive real parts, and that some of the
eigenvalues have zero real parts. Then the following centre manifold theorem holds:

Theorem 1 In some neighborhood U of the equilibrium point, there exists a unique centre mani-
fold W c such that, for any x ∈U, ϕt(x) →W c as t → ∞.

Comment 7 In this case, t → ∞ is just a sneaky way of avoiding having to make estimates of how
long it takes for trajectories to collapse to the manifold. In practice, it’s often relatively quick.

The centre manifold theorem guarantees the kind of behavior seen in the diagram above for systems
which have a centre and no unstable manifold. Following the reasoning of example 3.2, we can
conclude that we just need to analyze the behavior in W c in order to figure out how the system
behaves at long times.

Finally, we sometimes see dynamical systems lacking a centre manifold, but which still behave
a bit as the centre manifold theorem describes in that there is a low-dimensional manifold which
attracts the trajectories faster than systems move toward the equilibrium point. This is usually due
to the existence of a slow manifold. Slow manifolds occur in systems where the equilibrium point
is stable (all eigenvalues of the Jacobian negative) but where some eigenvalues are much smaller
than others in absolute value. The small eigenvalues lead to relatively slow movement toward the
equilibrium point, while the fast eigenvalues are responsible for a rapid decay toward the slow
manifold.

5 Applications of invariant manifolds

Both of the following examples involve centre manifolds, but the principles for calculating at least
local approximations to other kinds of invariant manifolds are much the same.

5.1 The Lindemann mechanism revisited

The rate equations for the Lindemann mechanism are

ȧ = −a2 +αab,

ḃ = a2 −αab−b.

We found previously that the Jacobian at the equilibrium point (0,0) was

J∗ =

[

0 0
0 −1

]

.

The eigenvalues are λ0 = 0 and λ1 = −1. This is thus a system with a centre manifold. We will
now use centre manifold theory to determine the stability of the equilibrium point, a task which is
beyond the reach of stability analysis.
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First, we determine the eigenvectors of J∗. The eigenvectors satisfy J∗ei = λiei, or (λiI −
J∗)ei = 0. For λ0, we get

[

0 0
0 1

][

e01

e02

]

= 0,

from which we conclude that e02 = 0, i.e. that e0 = (1,0) (or any multiple thereof). Similarly, for
λ1,

[

−1 0
0 0

][

e11

e12

]

= 0,

which implies that e1 = (0,1). The two eigenvectors in this case happen to be the two coordinate
axes. This is, of course, not generally true, nor is it normally the case that the eigenvectors are
orthogonal to each other.

The centre manifold will therefore approach the equilibrium point along the a axis. It should
therefore be possible to write an equation for the centre manifold of the form b = b(a). On the
other hand, we would run into trouble if we wrote a = a(b), since the manifold would be vertical
at the equilibrium point. Given such an equation, we could write

ȧ = −a2 +αab(a) (4)

for the slow evolution along the centre manifold. Because the equilibrium point is at (0,0) and the
centre manifold enters the equilibrium point at a slope of zero, we know that the Taylor expansion
of b(a) is of the form

b = b2a2 +b3a3 +O(a4). (5)

The symbol O(a4) indicates that the next term in the expansion, which we aren’t writing down,
would be proportional to a4. This means that αab(a) = O(a3). Thus, on the centre manifold near
the equilibrium point,

ȧ = −a2 +O(a3). (6)

Let us review what we have learned. First, our equilibrium point has a stable and a centre
manifold. Motion parallel to the stable manifold rapidly leads to the centre manifold, because
components off the manifold are damped out at a rate proportional to eλ1t = e−t . Once a system
gets to the manifold, its motion is governed by equation 4, which reduced to 6 near the equilibrium
point. For a > 0, it follows that the equilibrium point is stable. Amusingly, the equilibrium point
is only semi-stable, as we see quite clearly here: If we take small, negative (unphysical) values
of a, equation 6 still applies, but now trajectories move away from the equilibrium point. In other
words, the equilibrium point is only stable from the right. This is pretty peculiar behavior, but then
just about everything about the irreversible Lindemann mechanism is peculiar.

When we use a centre manifold argument to determine the stability of an equilibrium, we gen-
erally need to do more work than we have done here. It is not typically the case that we can
determine the behavior on the manifold by inspection. Usually in fact, we have to use the mani-
fold equation to determine the coefficients of the Taylor expansion 5, then substitute the resulting
equation into 4 and simplify to determine the leading-order behavior of the rate. As an exercise,
let’s work out the coefficients b2 and b3. The manifold equation for a planar system is

ḃ =
db
da

ȧ.
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Note that the partial derivatives in the general manifold equation become an ordinary derivative
here since we’re computing a one-dimensional manifold.

We can evaluate db/da, the derivative on the manifold, directly from our ansatz 5:

db
da

= 2b2a+3b3a2 +O(a3).

Note that I’m keeping track of the truncation order. This is always a good idea. If we’re careful
about this, we can be reasonably sure at the end that we haven’t left out any terms which would
contribute to the coefficients we’re trying to calculate.

We now go back to the manifold equation, substituting in the rate equations, our ansatz for the
manifold, and the derivative of b on the manifold:

a2 −αa
[

b2a2 +b3a3 +O(a4)
]

−
[

b2a2 +b3a3 +O(a4)
]

=
[

2b2a+3b3a2 +O(a3)
]{

−a2 +αa
[

b2a2 +b3a3 +O(a4)
]}

.

We now collect on one side in powers of a:

a2(1−b2)+a3(2b2 −αb2 −b3)+O(a4) = 0.

Since this equation must be valid for any value of a, the coefficients of each term must individually
be equal to zero. Thus we get

b2 = 1.

b3 = (2−α)b2 = 2−α.

5.2 A simple AIDS model

Consider the following set of dimensionless ODEs, which describe a very simple model for the
spread of AIDS through two populations which have infrequent high-risk contacts:2

ċ1 = −αc1 + p1(c1 +β1c2), (7a)

ṗ1 = p1(1− c1 −β1c2), (7b)

ċ2 = −αc2 + p2(c2 +β2c1), (7c)

ṗ2 = p2(1− c2 −β2c1). (7d)

The details of this model can be studied from the original reference. Briefly, p j represents the
number of healthy individuals in subpopulation j, while c j represents the number of contagious
individuals. Terms in αc j represent increased mortality in the contagious group due to the disease.
Terms of the form p jck (whether j = k or not) represent the transmission of the disease from
contagious individuals. Due to the assumptions of the model, α > 0 and 0 < β j < 1.

It is convenient to use Maple from here on. We start by defining the rate equations:

2M. R. Roussel, SIAM Rev. 39, 106 (1997).
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> c1dot := -alpha*c1 + p1*(c1+beta1*c2):
> p1dot := p1*(1-c1-beta1*c2):
> c2dot := -alpha*c2 + p2*(c2+beta2*c1):
> p2dot := p2*(1-c2-beta2*c1):

We now solve for the steady states of the model:

> steady_states :=
solve({c1dot=0,p1dot=0,c2dot=0,p2dot=0},{c1,p1,c2,p2});

steady states := {c1 = 0, p1 = 0, p2 = 0, c2 = 0}, {c1 = 0, c2 = 1, p1 = 0, p2 = α},
{p2 = 0, c2 = 0, p1 = α, c1 = 1},
{p2 =

α(−1+β2)

−1+β2β1
, c2 =

−1+β2
−1+β2β1

, p1 =
α(−1+β1)

−1+β2β1
, c1 =

−1+β1
−1+β2β1

}

There are four steady states. The first one corresponds to extinction of the entire population, the
second and third to extinction of one subpopulation or the other, and the last to coexistence of both
subpopulations.

We will now determine the stability of these four steady states. Note that in the linalg rou-
tines, you have to always keep the same order for the variables. I choose to list them in the order
(c1, p1,c2, p2). Any other order would do, provided you’re consistent.

> with(linalg):
Warning, the protected names norm and trace have been redefined and
unprotected
> J := jacobian([c1dot,p1dot,c2dot,p2dot],[c1,p1,c2,p2]);

J :=









−α+p1 c1+β1c2 p1β1 0
−p1 1− c1−β1c2 −p1β1 0
p2β2 0 −α+p2 c2+β2c1
−p2β2 0 −p2 1− c2−β2c1









> J1 := map(x->subs(steady_states[1],x),J);

J1 :=









−α 0 0 0
0 1 0 0
0 0 −α 0
0 0 0 1









The eigenvalues of a diagonal matrix are just the diagonal elements. In this case, the eigenvalues
are therefore −α (twice) and 1 (twice). The positive eigenvalues make the extinction fixed point
unstable. (Phew!)

> J2 := map(x->subs(steady_states[2],x),J);

J2 :=









−α β1 0 0
0 1−β1 0 0

αβ2 0 0 1
−αβ2 0 −α 0








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> eigenvals(J2);

−α, 1−β1,
√
−α, −

√
−α

Since β1 < 1, the second eigenvalue is positive, so this steady state, in which population 1 becomes
extinct, is also unstable. I won’t do the calculation for the third steady state, but it shouldn’t surprise
you, given the symmetry of the model, that it’s unstable too.

The final steady state leads to a slightly more complex, but still tractable problem. I won’t show
the matrix J4, the Jacobian evaluated at the fourth steady state. It’s computed like the others, and
its form doesn’t suggest anything in particular. I’ll just go straight to calculating the characteristic
polynomial:

> J4 := map(x->subs(steady_states[4],x),J):
> factor(charpoly(J4,lambda));

(α+λ2)(2λαβ2β1+αβ1−λαβ1+αβ2−λαβ2−αβ2β1−α−λ2 +λ2 β2β1)

−1+β2β1

The eigenvalues are roots of this equation. Thus, either the first term in the numerator is zero, or
the second. The first term gives us a pair of purely imaginary eigenvalues:

λc
± = ±

√
−α.

We will therefore have a two-dimensional centre manifold associated with these eigenvalues. To
see what the second term in the characteristic equation implies, collect it in powers of λ:

> collect(2*lambda*alpha*beta2*beta1+alpha*beta1-lambda*alpha*beta1
+alpha*beta2-lambda*alpha*beta2-alpha*beta2*beta1-alpha-lambdaˆ2
+lambdaˆ2*beta2*beta1,lambda);

(−1+β2β1)λ2 +(2αβ2β1−αβ2−αβ1)λ+αβ1−α+αβ2−αβ2β1

Again, we’re trying to find out the values of λ at which this equation equals zero. It won’t change
anything to multiply the whole equation by −1. I’ll do that, and rearrange by hand a bit:

λ2(1−β1β2)+λα [β1(1−β2)+β2(1−β1)]+α(1−β1)(1−β2) = 0.

It should now be clear that all the coefficients in this equation are positive. You should convince
yourself that, if a quadratic equation has only positive coefficients, the real parts of the roots are
necessarily negative. Thus, these two eigenvalues (and their eigenvectors) are associated with the
stable manifold.

The fourth equilibrium point therefore has a two-dimensional stable manifold and a two-
dimensional centre manifold. We can apply the centre manifold theorem again, which says that,
eventually, the system will collapse onto the centre manifold so that we need only concern our-
selves with the dynamics in this plane.

Let’s compute the eigenvectors corresponding to the centre-manifold eigenvalues:

> eigenvectors(J4);
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This command calculates all the eigenvectors and eigenvalues. I’ll only show the output corre-
sponding to λc

±:

[
√
−α, 1, {

[

−
√
−α(−1+β1)

α(−1+β2)
,
−1+β1
−1+β2

, −
√
−α
α

, 1

]

}],

[−
√
−α, 1, {

[√−α(−1+β1)

α(−1+β2)
,
−1+β1
−1+β2

,

√
−α
α

, 1

]

}]

In each line above, the first value is the eigenvalue, and the second is its multiplicity (how many
different eigenvectors there are for this eigenvalue). The eigenvector itself appears after these two
quantities. Note that the eigenvectors are of the form

ec
± =

(

∓ i
√

α(1−β1)

α(1−β2)
,
1−β1

1−β2
,∓ i

√
α

α
,1

)

.

As was briefly mentioned in comment 3, the basis of the centre eigenspace can be obtained simply
by taking the real and imaginary parts of one of these vectors:

e1 =

(

0,
1−β1

1−β2
,0,1

)

,

and e2 =

(

1−β1√
α(1−β2)

,0,
1√
α

,0

)

.

If we let x = (c1, p1,c2, p2), and call the steady state we’re currently analyzing x4, then the centre
eigenspace of this steady state can be written in the form

x = x4 +a1e1 +a2e2.

Working through it in detail, we have

c1 =
1−β1

1−β1β2
+a2

1−β1√
α(1−β2)

.

p1 =
α(1−β1)

1−β1β2
+a1

1−β1

1−β2
.

c2 =
1−β2

1−β1β2
+

a2√
α

.

p2 =
α(1−β2)

1−β1β2
+a1.

We normally like to express manifolds and eigenspaces as explicit rather than parametric functions.
In other words, we would prefer to write c2 = g(c1, p1) and p2 = h(c1, p1). To do this, all we have
to do is to eliminate a1 and a2 from the above equations. If we do, we get a very simple result:

c2 =
1−β2

1−β1
c1, (8a)

and p2 =
1−β2

1−β1
p1. (8b)
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We could now think about expanding the centre manifold in a series by adding quadratic terms (in
c2

1, c2
2 and c1c2) to the above expressions, and then figuring out the coefficients using the manifold

equation. However, for this particular model, the centre eigenspace turns out to be exactly the
centre manifold, i.e. there are no quadratic or higher-order correction terms.

To prove this, we start by writing down the manifold equations:

ċ2 =
∂c2

∂c1
ċ1 +

∂c2

∂p1
ṗ1,

and ṗ2 =
∂p2

∂c1
ċ1 +

∂p2

∂p1
ṗ1.

On the centre eigenspace,
∂c2

∂p1
=

∂p2

∂c1
= 0,

which simplifies our manifold equations considerably. Now substitute the relevant equations into
the remaining terms. For the c2 equation, we get

−αc1
1−β2

1−β1
+ p1

1−β2

1−β1

(

c1
1−β2

1−β1
+β2c1

)

=
1−β2

1−β1

[

−αc1 + p1

(

c1 +β1c1
1−β2

1−β1

)]

.

∴ −α+ p1

(

1−β2

1−β1
+β2

)

= −α+ p1

(

1+β1
1−β2

1−β1

)

.

∴ −α+ p1
1−β1β2

1−β1
= −α+ p1

1−β1β2

1−β1
.

The equation is identically satisfied by the centre eigenspace. It is easy to verify that the p2

equation is also identically satisfied. This means that the centre eigenspace is actually an invariant
manifold, and thus that it is the centre manifold for this problem.

If we now substitute our centre manifold equations 8 into equations 7a and 7b, we get the ODEs
governing motion on the manifold:

ċ1 = −αc1 + c1 p1
1−β1β2

1−β1
, (9a)

ṗ1 = p1

(

1− c1
1−β1β2

1−β1

)

. (9b)

These equations turn out to be those of a very famous model from population ecology known as the
Lotka-Volterra model. We’ll save a discussion of the behavior of this model for another day. For
now, let us just note that we have reduced the problem of understanding the long-term dynamics
of the four-dimensional system 7 to the much simpler problem of studying the planar system 9.
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