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Hamiltonian systems

Suppose that we have a dynamical system whose equations of motion
are related to a function H(x,p) by

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi

Such a system is called a Hamiltonian system.

H(x,p) is called the Hamiltonian function, or just the Hamiltonian.

If the vectors x and p are elements of Rn, then we say that n is the
number of degrees of freedom.
The phase space is 2n-dimensional.
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Significance of the Hamiltonian

The Hamiltonian is a conserved quantity.

To see this, differentiate H(x,p) with respect to time using the chain
rule:

dH

dt
=

n∑
i=1

∂H

∂xi

dxi
dt

+
n∑

i=1

∂H

∂pi

dpi
dt

=
n∑

i=1

∂H

∂xi

∂H

∂pi
+

n∑
i=1

∂H

∂pi

(
−∂H
∂xi

)
= 0
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Conservative mechanical systems are Hamiltonian
Example: harmonic oscillator

Consider a harmonic oscillator with Hooke’s law force

F = −kx

Since

F =
dp

dt

(most general form of F = ma)

dp

dt
= −kx

Also,
dx

dt
= v = p/m
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Conservative mechanical systems are Hamiltonian
Example: harmonic oscillator (continued)

dx

dt
= p/m

dp

dt
= −kx

If this system is Hamiltonian, then we must have

∂H

∂p
= p/m and

∂H

∂x
= kx
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Conservative mechanical systems are Hamiltonian
Example: harmonic oscillator (continued)

From ∂H
∂p = p/m, we get

H =
p2

2m
+ f (x)

And from ∂H
∂x = kx ,

H =
1

2
kx2 + g(p)

Therefore

H =
1

2
kx2 +

p2

2m
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Dissipative mechanical systems are not Hamiltonian

If we take

F =
dp

dt
= −kx − µv

which includes a frictional (dissipative) term −µv , we get a system
that is not Hamiltonian.
Try it!
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Hamiltonian systems in two dimensions

For a two-dimensional Hamiltonian system, the Hamiltonian H(x , p)
defines solution curves in phase space.

Example: harmonic oscillator with k = 200 N m−1 and m = 0.1 kg
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Integrability

The Poisson bracket of two functions H(x,p) and L(x,p) is defined by

{H, L} =
n∑

i=1

(
∂H

∂pi

∂L

∂xi
− ∂H

∂xi

∂L

∂Pi

)
differentiable functions.

L(x,p) is a first integral of a Hamiltonian system if L̇ = 0.

L(x,p) is a first integral of a system with Hamiltonian H(x,p) if
{H, L} = 0.

A Hamiltonian system with n first integrals is completely integrable.
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An example: particle in a two-dimensional harmonic trap

A Paul trap holds ions in a well-defined region of space using electric
fields.
Overall, the potential is harmonic and can have a spherical geometry,
or hold the ions in a relatively flat disk.

Hamiltonian for a two-dimensional ion trap:

H =
p2x + p2y

2m
+

1

2
k(x2 + y2)

Since there is no external torque, the angular momentum
L = xpy − ypx should be a constant of the motion.
(Check this.)
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Particle in a two-dimensional harmonic trap (continued)

We have two degrees of freedom and two first integrals (H and L) so
this system is completely integrable.

The trajectories lie at the intersection of H(x , y , px , py ) = E and
L(x , y , px , py ) = `.

This intersection is a two-dimensional surface in the four-dimensional
phase space.
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