Chemistry 4010 Fall 2019
Test 2 Solutions

1. In panel (A), we appear to have a limit cycle. This limit cycle undergoes
a period doubling going from panel (A) to panel (B). Panel (B) thus
shows a period-doubled limit cycle. Going from panel (B) to panel
(C), the attractor has gone through at least one more period doubling.
We still have a limit cycle in panel (C), although a more complex one,
with at least four distinct loops. Panel (D) appears to show a chaotic
time series. An infinite number of period doublings would have occured
between panels (C) and (D).

2. (a) If a = 0, the equations to solve to find the equilibrium point are

y+z=20
z=20
b+xz—cz=0

Substituting x = 0 into the last equation, we get z = b/c. The
first of the equilibrium conditions then gives y = —z = —b/c. The
equilibrium point for a = 0 is therefore (0, —b/c,b/c).

(b) For a =0, b = 0.2 and ¢ = 5.7, the equilibrium point is roughly
(0,—0.0351,0.0351). I used a very simple XPPAUT input file for
to carry out the bifurcation analysis:
dx/dt=-(y+z)

dy/dt=x+ax*y
dz/dt=b+x*z-c*z

x(0)=0
y(0)=-0.0351
z(0)=0.0351

param a=0, b=0.2, c=5.7

done

Even starting close to the equilibrium point as I did, I had to run
Xppaut for a long time to get to equilibrium. I therefore set Total
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Figure 1: Bifurcation diagram for the Rossler model

to 2000 in the Numerics menu. This got me to equilibrium after
clicking on Initialconds—Last just a couple of times.

After starting AUTO, I set Par Max to 0.3. Following the hints
in the question, I reduced Ds, Dsmin and Dsmax to 0.001, 0.0001
and 0.01 respectively. After I started computing the branch of
limit cycles, I found that I didn’t get very far with the default
200 points, so I increased Nmax to 2000 before continuing. My
bifurcation diagram is shown in figure 1. I found the following
bifurcation points:



Figure 2: Chaotic attractor found at at a = 0.16, b = 0.2 and ¢ = 5.7.

Type a

Andronov-Hopf  0.0060
Period-doubling 0.1096
Period-doubling 0.1430
Period-doubling 0.1520

(c) Figure 2 shows the attractor found at a = 0.16, b = 0.2 and
¢ = 5.7. (It was not necessary to show the attractor in your
response.) I guessed a good value of a based on the values at the
period-doubling points I had observed. Many other values of a
would have done just as nicely.
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Note: We could also write down an equation for [HI], but since it
only appears as a product, it is not needed to study this model.

(b) e The transformation to dimensionless equations is optional
here, but let’s suppose we decided to go ahead with it. The
following are possible dimensions of the various quantities ap-
pearing in the equations:

[I]:  bar kg s™!
[I]:  bar k_i: bar~!s!
[Ho]: bar  ky: bar 257!

t: S
Define the dimensionless variables
r = /Ll[lz]/kla
y = k_1[1]/k,
T = ]{Jlt
Inserting these quantities into the differential equations, we
get
dx L
— = —I
dr 4
dy ka[Ha]
2 =2x — 2% — 22—
e S N
Define the dimensionless parameter
 ko[Hy]
o= )
k-1
Then
dz L2
=
dr v
d
LA P 2u2%(1 + a).
dr



The rest of the solutions will be based on these dimensionless
equations, although you could have chosen to work with the
original differential equations.

To find the equilibrium points, solve the equations

- +y2 - Oa
2z — 2% — 20° = 0.

The first of these equations gives x = y2. Substituted into
the second equation, we find that y = 0, so x = 0. The
equilibrium point is therefore (z*, y*) = (0,0).

The Jacobian is

J— —1 2y
12 A0+ a)yl”
At the equilibrium point, we have
. |—-10
J = { ; O} |
The eigenvalues of the Jacobian are therefore —1 and 0. The
stability of the equilibrium point is undecidable by linear sta-
bility analysis because of the zero eigenvalue. The negative
eigenvalue means that the centre-manifold theorem will ap-
ply, i.e. that the initial relaxation will bring the composition

to the centre manifold, and that subsequent motion on this
manifold will determine the stability.

If linear stability analysis doesn’t resolve the stability issue,
phase-plane analysis might. I usually start by determining
the nullclines. The z nullcline is

yx = V.

B x
Y= 1+ a

Note that, since a > 0, yy < yx at any given value of z.
Figure 3 shows a sketch of the vector field. The y nullcline is

The y nullcline is
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Figure 3: Velocity field for the reaction of Hy with Iy at fixed [Hp]. The
dashed blue curve is the y nullcline. The dotted red curve is the x nullcline.

represented by the blue dashed curve, and the z nullcline is the
red dotted curve. Along the x axis, v = (—x,2z). The same
qualitative sign pattern is found everywhere below the y null-
cline. The sign of dy/dr changes as the composition crosses
this nullcline. Similarly, on the y axis, v = (y?, —2¢y*(1 + a)).
Again, this overall orientation of the velocity vector is main-
tained until the composition crosses the x nullcline.

Once we have the velocity field, we can trace out trajectories,
as shown in figure 4. It becomes clear from the sketch of the
trajectories that all trajectories started from the physically
realizable quadrant must reach the equilibrium point, i.e. the
equilibrium point is a global (within the positive quadrant)
attractor.

e To carry out the centre-manifold analysis, we need the eigen-
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Figure 4: Sketch of the trajectories for the reaction of Hy with Iy



vector of the Jacobian belonging to the zero eigenvalue. An
eigenvector satisfies J*u = Au. For A = 0, this becomes

J*u=0:
~1 0] [u|  |—ud| O
2 0 ug(,o) B 2u§60) 0]

Thus, (0,1) is an eigenvector. This leads to a slight complica-
tion, namely that the centre manifold enters the equilibrium
point vertically. A simple way to address this problem is to
write the centre manifold in the form z = zqy(y), which will
have a proper Taylor expansion. Written in this form, zcoy
has the representation

zem(y) = ay® + aszy® + O(yh).

(ap is zero because the equilibrium point is (0,0), and a; is
zero because the centre manifold enters the equilibrium point
vertically.) The invariance equation in this case is

dx

ax . dSL’CM @
dr

oM dy dr

M
Using the rate equations and the Taylor series representation
of the centre manifold, we get

— asy® + azy® + O(y*)] + ¢
= [2a2y + 3azy” + O(y*)]
X {2 [a2y2 + asy® + O(y4)} — 257 (1 + 04)} )

If we now collect terms in 32 on both sides of this equation,
we get

—as + 1= O
which of course implies that ao = 1. Accordingly, on the
centre manifold
dy

=2[y* +0(y")] = 2/°(1 + @) = —2a9* + O(y°).
dT | om
For any positive value of y, dy/dr < 0, so y decreases toward
the equilibrium point. It follows that the equilibrium point is
semi-stable.
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Figure 5: Phase-plane flow computed by Xppaut for the Hy/I; model with
a=1.

e We could have done something like a phase-plane analysis
using XPPAUT using the Nullcline function along with the
Dir.field/flow—Flow function. My XPPAUT input file is
the following:

dx/dt=-x+y~2
dy/dt=2*x-2xy~ 2% (1+alpha)

param alpha=1

done

My computation of the flow is shown in figure 5. (We could
also have plotted the vector field.) The resulting figure is,



in essence, a graphical proof of stability of the equilibrium
point. The only catch is that we can’t be sure from this result
alone that the qualitative behavior is independent of a. We
still need to look at the equations to convince ourselves that
nothing changes qualitatively when « changes.
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