Chemistry 4010 Fall 2019
Test 1 solutions
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3. Sketch of the bifurcation diagram for a supercritical Andronov-Hopf
bifurcation:
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In a supercritical Andronov-Hopf bifurcation, the real part of a complex-
conjugate pair of eigenvalues crosses zero. As the equilibrium point is
destabilized, a stable limit cycle is born, which grows as we move away
from the bifurcation point:
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Sketch of the bifurcation diagram for a subcritical Andronov-Hopf bi-

furcation:
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unstable limit cycle

parameter

In a subcritical Andronov-Hopf bifurcation, an unstable limit cycle
surrounding a stable focus shrinks until its radius goes to zero. At
that point, the focus is destabilized, with the real part of a pair of

complex-conjugate eigenvalues crossing zero.

In both cases, a stable focus loses stability and becomes an unstable
focus. The difference is whether this loss of stability is accompanied by
the creation of a stable limit cycle (supercritical case) or by the loss of

an unstable limit cycle (subcritical).
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(b) To solve for the equilibrium points:

X (kY —d,) =0 (1)
Y (k,X —d,) =0 (2)

Equation 1 has two solutions: X' = 0 or Y* = dy/ky. I we
substitute X into equation 2, we get YT = 0. On the other hand,
since Y* # 0, equation 2 gives X* = d,/k,. We therefore have the
two equilibrium points

(X1, Y1) =(0,0)

(c) Phase-plane analysis: Let us start by working out the null-
clines. The X nullcline, which I will call X', is obtained by
setting dX/dt = 0. But as we saw above, this has two solu-
tions. X is therefore the union of the following two lines in
the phase plane:

X=J{x=0y=y"}
Similarly, the Y nullcline, ), is
y=J{v=0x=x"}

The nullclines are illustrated in Fig. 1.

Our job now is to sketch the vector field. On the Y axis,
dX/dt =0, and dY/dt = —d,Y < 0. (This makes sense: if
you don’t have any females, you can’t make any more, and
the population dies off.) On the line Y = Y™ we still have
dX/dt =0. As long as X < X*, dY/dt must still be negative
(since its sign can only change on the Y nullcline).
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Figure 1: X and Y nullclines for the model of a sexually reproducing popula-
tion. The X nullcline (X) is in pink while the Y nullcline (}) is in blue. (And
yes, I know that these are ridiculously stereotypical choices. I am hoping that
they have some mnemonic value because of that.)



On the X axis, dY/dt = 0, and dX/dt = —d, X < 0. On
the line X = X*, we have the same pattern of signs provided
we are below the X nullcline, where the sign of dX/dt will
change.

The signs of the two velocity components will be the same
everywhere inside the rectangle whose opposite corners are
(XTYT) and (X*,Y*). For the sake of argument then, sup-
pose that we consider a point with small values of both X and
Y. Then (dX/dt,dY/dt) ~ (—d,X,—d,Y), so both deriva-
tives are negative. We can now use this information and the
fact that the signs of the corresponding velocity components
change on the nullclines to sketch the vector field, which is
shown in Fig. 2.

Finally, we can sketch trajectories. My sketch is shown in
Fig. 3. We see that the origin is a locally stable equilibrium
point. However, trajectories that start from sufficiently far
away from the origin, and in particular all trajectories that
start from the region X > X* Y > Y™ diverge to infinity.
Thus, small populations become extinct, while large popula-
tions explode.

Linear stability analysis: This analysis starts like the phase
plane analysis, by finding the two equilibrium points.
We then compute the Jacobian:

j_[kY—d kX
T kY kX —d,

We start by analyzing the stability of the origin. We have

—d 0
[
0 —d,

The eigenvalues of this matrix are —d, and —d,, so the origin
is a stable equilibrium point.
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Figure 2: Sketch of the vector field for the model of a sexually reproducing
population.



Figure 3: Sketch of the trajectories in the X-Y phase plane.



For the other equilibrium point, we have

J*:[ 0 k;gcdy/k;y]

kydo/ke 0
_ Jo N —kedy/k,
.\)\I—J]_‘_kydgg/kx \
=\ —d,d, =0

A= +4/d,/d,

(X*,Y*) is therefore a saddle point.

From this analysis alone, we can conclude that the origin is
a stable equilibrium point, i.e. that extinction is a possible
long-term fate of such a population. We know that there
does not exist a stable non-extinction equilibrium. However,
the population explosion trajectories we saw in the phase-
plane analysis are not evident from the linear stability analysis
alone.

5. (a) Units of the variables and parameters:
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I choose the following dimensionless variables:

T=Vt
S = S/So

Replacing the original variables by my scaled variables, I get

ds V' Sys
SoV = = Q(So = Sos) = —— "5
1+ Ky + KuK;
. Q s
8= V(l - S) - 1 Sos 5(2]52
+ Ky + Ky Ky



Define the dimensionless parameters

q=Q/V
o = So/KM
B=So/K;

The dimensionless differential equation is therefore

s
1+ as+afBs?

$=q(l—s)

When ¢ = 0, we have the equilibrium point s = 0.
To set up my XPPAUT input file, I need to calculate the equivalent
values of my parameters:

a=Sy/Ky=10uM/1uM =10

B =So/Kr=10uM/0.5 uM = 20

My XPPAUT input file is pretty simple:

# Xppaut input file for Degn’s model of the
# peroxidase-oxidase reaction

ds/dt=q*(1-s) - s/(1 + alpha*s + alphax*beta*s~2)
param g=0, alpha=10, beta=20

done

After a small amount of experimentation to set appropriate axes
and step sizes, I got the bifurcation diagram shown in Fig. 4. We
see that there is a range of bistability between the saddle-node
bifurcations at ¢ = 0.018 and 0.028.
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Figure 4: Bifurcation diagram for the peroxidase-oxidase model
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