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There is no assignment this week so you can focus on studying for the
test.

The following problems practice the skills you will need to complete the
test, although some of these problems may be slightly harder than test ques-
tions.

1. Exercises 2.1–2.3 from the textbook

2. Carry out a linear stability analysis of the equation

ẋ = µ+ x2,

where the parameter µ can adopt any value, positive or negative. Iden-
tify any bifurcations you encounter.

3. The van der Pol oscillator has a long history in nonlinear dynamics.
It was first devised by Balthasar van der Pol while he was working at
Philips Research Laboratories, and was eventually used to understand
action potentials in electrically excitable cells, especially in the heart.
An electrical circuit realizing these equations can be built, and so it
can be studied experimentally in a very direct way. There are several
different ways of writing the van der Pol equations, including this one:

ẋ1 = x2 + λ(x1 − x31/3),

ẋ2 = −x1
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The variables can be positive or negative. Consider both positive and
negative values of λ.1

(a) Carry out a linear stability analysis of the equilibrium point. Does
the stability depend on λ? If so, what type of bifurcation might
you expect?

(b) Confirm your analysis using AUTO.

Hint: Start at a value of λ where the equilibrium point is stable.

4. The potential energy of many anharmonic oscillators can be approxi-
mated by

V (x) =
1

2
k2x

2 +
1

4
k4x

4.

(a) The force is related to the potential energy by

F = −dV
dx

.

Starting from F = ma, write down a pair of coupled ordinary
differential equations for the motion of the oscillator.

Hint: Look at example 3.3 in the textbook.

(b) Is the total energy a Lyapunov function for an anharmonic oscilla-
tor with the above potential energy? If so, what does the existence
of a Lyapunov function prove?

5. The Oregonator is a classic model for the Belousov-Zhabotinsky (BZ)
reaction, arguably the first chemical oscillator to be studied in detail. In
the classic BZ reaction, Ce3+ is oxidized by HBrO3, and Ce4+ is reduced
back to cerium(III) by an organic acid, usually malonic acid. There is
also some important organobromine chemistry in the mechanism, the
details of which are perhaps best left for another time. In its simplest
form, the Oregonator takes the form

ẋ = µ

[
x(1 − x) − fz

x− q

x+ q

]
,

ż = x− z.

1In the physical interpretation of this model, λ can only be positive. It is however a
useful exercise here to allow λ to be negative as well.
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The variables x and z represent, respectively, the dimensionless con-
centrations of HBrO2 and of cerium(IV) ions. The parameters µ, f and
q are all positive.

(a) Show that there is a trivial equilibrium point at (0, 0), as well as
one positive equilibrium point.

Note: You don’t have to solve for the coordinates of the nontrivial
equilibrium. I am only asking you to show that such a point must
exist.

(b) Using linear stability analysis, show that the trivial equilibrium
point is unstable. Classify this equilibrium point as a node, focus
or saddle point.

(c) Using the parameters f = 1, and q = 7.6×10−5, carry out a bifur-
cation analysis of this mechanism using AUTO. Try starting with
a small but nonzero value of µ. Use nonzero initial conditions
to find an equilibrium point numerically as a starting point for
AUTO. By varying µ, you should eventually see an Andronov-
Hopf bifurcation. What kind of Andronov-Hopf bifurcation is it?

Hint: After identifying the neighborhood of the Andronov-Hopf
bifurcation using AUTO, you will want to take a fairly narrow
window of the parameter µ around this point in order to observe
the behavior of the solutions near the bifurcation and thus deter-
mine its type.

(d) Why would you not want to start at µ = 0?
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