
Chemistry 4010 Fall 2019 Assignment 7 Solutions

1. The Hamiltonian is

H =
p2

2m
+De

(
e−2a(x−xe) − 2e−a(x−xe)

)
.

The equations of motion are

dx

dt
=
∂H

∂p
= p/m.

dp

dt
= −∂H

∂x
= −De

(
−2ae−2a(x−xe) + 2ae−a(x−xe)

)
= 2aDe

(
e−2a(x−xe) − e−a(x−xe)

)
2. Because of its implicitplot() function, Maple is the simpler tool to use for this

task.1 Here is my Maple session:

Define the Hamiltonian:

H := (x, p) 7→ 1/2 p2

m
+ De

(
e−2 a(x−xe) − 2 e−a(x−xe)

)
H := (x, p) 7→ 1/2

p2

m
+ De

(
e−2 a(x−xe) − 2 e−a(x−xe)

)
Define the parameters:

m := 1.6× 10−27

m := 1.600000000× 10−27

De := 9.0× 10−19

De := 9.0000000000× 10−19

a := 2.0× 1010

a := 20000000000.0

xe := 0.0000000001

xe := 0.0000000001000000000

I’m going to store the values of H that I want to use in a list:

Hvals := [−7.0× 10−19,−2.0× 10−19]

Hvals := [−7.0000000000× 10−19,−2.0000000000× 10−19]

The largest orbit will have the highest energy. To find its extent (minimum and
maximum values of x and p), we can use solve():

xlim := solve (Hvals2 = H (x, 0))

1Matlab has a fimplicit() function that does the same thing, but this function is not available in
Octave at this time.
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xlim := 0.0000000002068184195, 6.838545034× 10−11

plim := solve (Hvals2 = H (xe, p))

plim := −4.732863826× 10−23, 4.732863826× 10−23

I now have everything I need to call implicitplot().

with(plots):

p1 := implicitplot(Hvals2 = H(x, p), x = xlim2..xlim1, p = plim1..plim2, color = blue) :

p2 := implicitplot(Hvals1 = H(x, p), x = xlim2..xlim1, p = plim1..plim2, color = red) :

display ([p1 , p2 ])
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3.

dV

dx
= De

(
−2ae−2a(x−xe) + 2ae−a(x−xe)

)
= 2aDe

(
−e−2a(x−xe) + e−a(x−xe)

)
d2V

dx2
= 2aDe

(
2ae−2a(x−xe) − ae−a(x−xe)

)
= 2a2De

(
2e−2a(x−xe) − e−a(x−xe)

)
∴ k =

d2V

dx2

∣∣∣∣
x=xe

= 2a2De

∴ ν =
1

2π

√
k

m
=

a

2π

√
2De

m

=
2× 1010 m−1

2π

√
2(9× 10−19 J)

1.6× 10−27 kg

= 1× 1014 Hz.

4. A frequency of 1 × 1014 Hz corresponds to a period of 1 × 10−14 s. I would therefore
get 100 periods of oscillation if I set the total integration time to 10−12 s. To have any
hope of representing the solution accurately, I probably need at least 20 points per
period, so I will set h = 5× 10−16 s.

The semi-implicit Euler scheme is the following:

xi = xi−1 + hpi−1/m,

pi = pi−1 + 2ahDe

(
e−2a(xi−xe) − e−a(xi−xe)

)
.

My code is the following:

% Implicit-Euler integration for a particle in a Morse potential

% Parameters:
m = 1.6e-27
De = 9e-19
a = 2e10
xe = 1e-10

% Initial conditions:
x(1) = 2e-10
p(1) = 0

% Housekeeping variables
i = 1;

% Data to store
H(1) = p(1)^2/(2*m) + De*(exp(-2*a*(x(1)-xe)) - 2*exp(-a*(x(1)-xe)))
t(1) = 0;
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% Numerical parameters
h = 5e-16
tmax = 1e-12;

% Main loop
while t(i)<tmax

i = i + 1;
t(i) = t(i-1) + h;
x(i) = x(i-1) + h*p(i-1)/m;
p(i) = p(i-1) + 2*a*De*h*(exp(-2*a*(x(i)-xe)) - exp(-a*(x(i)-xe)));
H(i) = p(i)^2/(2*m) + De*(exp(-2*a*(x(i)-xe)) - 2*exp(-a*(x(i)-xe)));

end

% Calculate the mean value of H
meanH=mean(H)

% Calculate the period by finding differences between successive peaks in x.
% Note: findpeaks() is not guaranteed to be in every Matlab or Octave
% installation. You may have to do this calculation by hand, e.g. by reading
% the values of t at a few peaks from a graph.
% Even if findpeaks() is present, in Octave you have to explicitly load the
% signal package to access it. For Matlab, comment out the following line.
pkg load signal
[pkval,pkpos] = findpeaks(x);
periods = t(pkpos(2:end))-t(pkpos(1:end-1));
per = mean(periods)
freq = 1/per

The value of the Hamiltonian oscillates with a mean of −2.24× 10−19 J (Fig. 1). The
initial value of H was −2.27 × 10−19 J, so this is very reasonable. Although I only
show the first few oscillations in the figure, the oscillations continue for as long as I
integrated without any noticeable drift away from their mean.

The vibrational frequency found by my simulation is 5.47 × 1013 Hz (calculated using
Octave). (I get a slightly lower frequency of 5.37× 1013 Hz running the same code in
Matlab, no doubt due to some small differences in the findpeaks() functions in the
two systems.) This is a bit more than half of the frequency estimated based on the
harmonic oscillator equations. Note that we are using a high energy here, far above
the bottom of the potential well where the harmonic approximation would be expected
to apply, so this discrepancy is not too surprising.

Figure 2 shows the orbit in phase space. Compared to the exact result, this orbit
lacks symmetry with respect to a change of sign of p. The size of the orbit is however
approximately correct.

5. With h = 1.8 × 10−14 s, x just increases throughout the simulation. This behavior
continues until about h = 1.2× 10−15 s. At this point, we see a few oscillations before
x starts to increase (Fig. 3). This behavior persists until about h = 7.9× 10−16, where
we see our first sustained oscillations. Since the period for this h is 1.8× 10−14 s, this
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Figure 1: Value of the Hamiltonian for the first 2× 10−13 s of the simulation
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Figure 2: Orbit of the Morse oscillator calculated using the implicit Euler method with
h = 5× 10−16 s.
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Figure 3: Computed solution for h = 1.2× 10−15 s.
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corresponds to about 23 points per period, which is similar to what I had originally
aimed for when choosing h.

We can keep playing this game to see what happens. I wrote a version of my program
that varies h systematically and collects some statistics as it does so. Here is the
program:

% Implicit-Euler integration for a particle in a Morse potential
% Vary the step size h, and store the frequency for each h.

% Parameters:
m = 1.6e-27
De = 9e-19
a = 2e10
xe = 1e-10

% Housekeeping variables
j = 1;

% Data to store

% Numerical parameters
h(1) = 7.9e-16;
hend = 3.6e-17;
tmax = 1e-12;

% Comment out the following line if using Matlab.
pkg load signal

% Loop over values of h
while h(end) > hend

clear x t

i = 1;
t(1) = 0;
x(1) = 2e-10;
p = 0;
H(j,1) = p^2/(2*m) + De*(exp(-2*a*(x(1)-xe)) - 2*exp(-a*(x(1)-xe)));

while t<tmax
i = i + 1;
t(i) = t(i-1) + h(j);
x(i) = x(i-1) + h(j)*p/m;
p = p + 2*a*De*h(j)*(exp(-2*a*(x(i)-xe)) - exp(-a*(x(i)-xe)));
H(j,i) = p^2/(2*m) + De*(exp(-2*a*(x(i)-xe)) - 2*exp(-a*(x(i)-xe)));

end

% Calculate the mean value of H
meanH(j)=mean(H(j,:));

% Calculate the period by finding differences between successive peaks in x.
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Figure 4: Frequency vs h

[pkval,pkpos] = findpeaks(x);
periods = t(pkpos(2:end))-t(pkpos(1:end-1));
per = mean(periods);
freq(j) = 1/per;

j=j+1;
h(j) = 0.8*h(j-1);

end

h=h(1:end-1);

The value of the Hamiltonian is more-or-less independent of h. The frequency decreases
somewhat as h is decreased from the largest value considered, but this decrease is not
dramatic (of the order of 3%, Fig. 4). This is comforting, because it means that this
numerical method is relatively robust: as soon as h is small enough to give limit cycles,
consistent estimates of the frequency are obtained.
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