
Chemistry 4010 Fall 2019 Assignment 6
Solutions

We will be working with the following rate equations:

dA

dt
= −k1A2 + k−1AB,

dB

dt
= k1A

2 − k−1AB − k2B.

1. At a maximum of B, dB/dt = 0. Therefore,

k1A
2 − k−1AB − k2B = 0.

Solving for B, we get

B =
k1A

2

k−1A+ k2
.

If the steady-state approximation is to be applicable, then the maxi-
mum in B must be reached early in the reaction when A ≈ A0, where
A0 is the initial concentration of A. Therefore

Bme ≈
k1A

2
0

k−1A0 + k2
.

(The subscript ‘me’ is intended to mean ‘maximum, estimated’. The
fact that Bme can be read phonetically as ‘be me’ is just a fun coinci-
dence.)

2. We start by rescaling the concentrations so that they are O(1) quanti-
ties. The following rescalings achieve this:

a = A/A0, (1a)

b = B/Bme. (1b)

Substituting these quantities into dA/dt, we get

A0
da

dt
= −k1A2

0a
2 + k−1A0Bmeab;

∴
da

dt
= −k1A0a

2 + ab
k1k−1A

2
0

k−1A0 + k2

= k1A0

(
−a2 + ab

k−1A0

k−1A0 + k2

)
.
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You can easily verify that the fractional term in the above equation
(a) is dimensionless, and (b) has a value in the interval (0, 1) (assuming
nonzero rate constants and initial concentration of A).Therefore, define

β =
k−1A0

k−1A0 + k2
.

We therefore have
da

dt
= k1A0

(
−a2 + βab

)
. (2)

We now susbstitute our scaled variables into dB/dt:

Bme
db

dt
= k1A

2
0a

2 − k−1A0Bmeab− k2Bmeb;

∴
db

dt
=
k1A

2
0

Bme

a2 − k−1A0ab− k2b

= a2 (k−1A0 + k2)− k−1A0ab− k2b
= (k−1A0 + k2)

[
a2 − βab− (1− β)b

]
,

using the fact that

1− β =
k2

k−1A0 + k2
.

We now need to pick a scaling for time. The typical assumption leading
to the steady-state approximation would be that the intermediate is
highly reactive, so that the slow time scale would be associated with
the initial step of the reaction. Inspecting equation (2), we find a
convenient term with units of [t]−1 that is associated with the slow
step. We therefore choose

τ = k1A0t.

Substituting this quantity into the rate equations, we get

da

dτ
= −a2 + βab, (3a)

ε
db

dτ
= a2 − βab− (1− β)b, (3b)

where

ε =
k1A0

k−1A0 + k2
.
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The rate equations are now in the singular perturbation form, with
small parameter ε. If either the deenergization reaction (with rate
constant k−1) or the product forming step (rate constant k2) is fast
compared to energization of the reactant (rate constant k1), then ε will
be small. Since the energized reactant (B) is supposed to be highly
reactive, this small parameter is the correct one for this problem.

According to Tikhonov’s theorem, the steady-state approximation will
be valid when ε� 1, i.e. when

k1A0 � k−1A0 + k2.

This will be true if either k1 � k−1 or k1A0 � k2.

3. The steady-state approximation is the ε→ 0 limit of equation (3b), i.e.

b =
a2

βa+ 1− β
. (4)

Substituting this equation into equation (3a), we get

da

dτ
= −a2 +

βa3

βa+ 1− β
=
−a2(1− β)

βa+ 1− β
.

We can solve this differential equation by separation of variables:

dτ = −daβa+ 1− β
a2(1− β)

= −da
(

β

1− β
1

a
+

1

a2

)
.

Note that because of the definition (1a), a(0) = 1.

∴
∫ τ

0

du = −
∫ a

1

dv

(
β

1− β
1

v
+

1

v2

)
(u and v are dummy variables of integration.)

∴ τ = −
[

β

1− β
ln v − 1

v

]a
1

= − β

1− β
ln a+

1

a
− 1. (5)
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4. (a) i. The trick is to define a new time variable θ related to τ by

τ = εθ.

Then we have

da

dθ
= ε

(
−a2 + βab

)
,

db

dθ
= a2 − βab− (1− β)b,

ii. For very small ε, da/dθ ≈ 0, therefore a ≈ 1. This reduces
db/dθ to

db

dθ
= 1− βb− (1− β)b = 1− b.

∴ dθ =
db

1− b
,

∴
∫ θ

0

du =

∫ b

0

dv

1− v
.

∴ θ =

∫ b

0

dv

1− v
.

With the substitution w = 1− v, the integral becomes

θ =

∫ 1−b

1

−dw
w

= − ln(1− b).
∴ 1− b = e−θ.

∴ b = 1− e−θ.

iii. To obtain the global solution, we add the inner and outer
solutions, and subtract their common part. The inner solution
is valid at short times. As θ → ∞, it tends to b → 1. The
outer solution on the other hand is valid over the slow time
scale. If we take τ → 0, we get a → 1 which, from (4), also
gives b → 1. Thus, the common part is 1, and the global
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solution is

b(τ) = 1− e−τ/ε +
a(τ)2

βa(τ) + 1− β
− 1

=
a(τ)2

βa(τ) + 1− β
− e−τ/ε.

To use this formula, we calculate a(τ) from equation (5).

iv. My Maple worksheet to solve this problem appears at the end
of the solutions.

(b) The slow manifold b = bCM(a) satisfies the invariance equation:

db

dτ
=
dbCM

da

da

dτ
.

Expand the slow manifold in a power series in ε:

bCM(a) = φ0(a) + εφ1(a) +O(ε2).

∴
dbCM

da
=
dφ0

da
+ ε

dφ1

da
+O(ε2).

We can now substitute into the invariance equation:

1

ε

{
a2 −

[
φ0 + εφ1 +O(ε2)

]
(βa+ 1− β)

}
=

[
dφ0

da
+ ε

dφ1

da
+O(ε2)

]{
−a2 + βa

[
φ0(a) + εφ1(a) +O(ε2)

]}
.

∴ a2 −
[
φ0 + εφ1 +O(ε2)

]
(βa+ 1− β)

= ε

[
dφ0

da
+ ε

dφ1

da
+O(ε2)

]{
−a2 + βa

[
φ0 + εφ1 +O(ε2)

]}
.

We now collect terms in equal powers of ε on both sides of the
equation.

ε0:

a2 − φ0 (βa+ 1− β) = 0.

∴ φ0 =
a2

βa+ 1− β
.

This is no great surprise: the zero-order term is just the
steady-state approximation. [Compare equation (4).]
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ε1:

−φ1 (βa+ 1− β) =
dφ0

da

(
−a2 + βaφ0

)
.

∴ φ1 = −dφ0

da

−a2 + βaφ0

βa+ 1− β

Having obtained this equation, it’s easiest to use Maple to
compute and simplify this function. See my Maple worksheet
for details. The result is

φ1 =
a3(1− β) [βa+ 2(1− β)]

[βa+ 1− β]4
.

The first-order expansion of the slow manifold is therefore

bCM ≈
a2

βa+ 1− β
+ ε

a3(1− β) [βa+ 2(1− β)]

[βa+ 1− β]4
.
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Question 4(a)iv

Set the rate constants and calculate the dimensionless parameters:
k1 1

k1 1

km1 100
km1 100

k2 2
k2 2

A0 0.01
A0 0.01

beta
km1 A0

km1 A0 k2
0.3333333333

epsilon
k1 A0

km1 A0 k2
0.003333333333

Note the small value of epsilon.

Now define a function to calculate b(tau):
b proc tau  global epsilon, beta; local a;

 a fsolve tau =
beta

1 beta
ln a

1
a

1 :

 a2

beta a 1 beta
exp

tau
epsilon

 end
b proc tau

local a;
global epsilon, beta;
a  fsolve tau = beta * ln a / 1  beta 1 /a  1 ;
a^2 / beta * a 1  beta   exp tau / epsilon

end proc

I experimented a bit to find a range of tau values that show clearly the shape of the function:
plot b, 0 ..10, labels = tau, b
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If you want to see the rapid initial rise in b, you have to zoom in on the initial portion of the curve:
plot b, 0 ..0.3, labels = tau, b
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Question 4(b) calculation

First, clear the value of beta (or reset the worksheet): 
beta 'beta'

phi0
a2

beta a 1 beta

0
a2

 a 1

Possible intermediate result:
simplify diff phi0, a

2 a 2   a

1 a 1  
2

phi1
diff phi0, a a2 beta a phi0

beta a 1 beta
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simplify phi1
1  2 a 2   a3

1 a 1  
4


	Maple worksheet

