
Chemistry 4010 Fall 2019 Assignment 2
Solutions

1. The rate equations are

dx

dt
= v,

dv

dt
= (−kx− µv)/m.

The Jacobian is the constant matrix

J =

[
0 1

−k/m −µ/m

]
.

The characteristic polynomial is found by solving |λI− J| = 0.

|λI− J| =
∣∣∣∣ λ −1
k/m λ+ µ/m

∣∣∣∣
= λ(λ+ µ/m) + k/m = 0.

All the coefficients of this quadratic polynomial are positive. By a
theorem seen in class, the eigenvalues must therefore have negative
real parts.

If you want to go further than this, you can write down the solution to
the quadratic equation:

λ± =
1

2

{
− µ
m
±
√( µ

m

)2
− 4

k

m

}
=

1

2m

{
−µ±

√
µ2 − 4km

}
.

If µ2 > 4km, then we have two real, negative eigenvalues. Physicists
call this the overdamped case. On the other hand, if µ2 < 4km, we
have two complex eigenvalues with negative real parts. This is the
underdamped case.
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2. (a) The rate equations for [A] and [X] are

d[A]

dt
= −k1[A] + k−1[X]2,

d[X]

dt
= 2k1[A]− 2k−1[X]2 − k2[X].

Dimensions of the variables and parameters:

[A], [X]: M
t: s
k1, k2: s−1

k−1: M−1s−1

I arbitrarily choose the following dimensionless variables:

a = k−1[A]/k1, x = k−1[X]/k1, τ = k2t.

Substituting into the first rate equation, we have

k1k2
k−1

da

dτ
= − k21

k−1

a+ k−1

(
k1
k−1

)2

x2.

∴ ȧ = −k1
k2
a+

k1
k2
x2.

Define

α = k1/k2.

∴ ȧ = α(x2 − a).

Similarly,
ẋ = 2αa− 2αx2 − x.

(b) There is only one equilibrium point, namely (0, 0). The Jacobian
is

J =

[
−α 2αx
2α −4αx− 1

]
.

Evaluated at the equilibrium point:

J∗ =

[
−α 0
2α −1

]
.
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The characteristic equation is

|λI− J∗| =
∣∣∣∣ λ+ α 0
−2α λ+ 1

∣∣∣∣
= (λ+ α)(λ+ 1) = 0.

The eigenvalues are therefore −α and −1. Both are negative, so
the equilibrium point is stable.

3. (a) A naive approach would first try to find equilibrium points by
setting dθ/dt = dr/dt = 0. However, since dθ/dt is constant, there
are no such points. We would be stuck if we tried to proceed this
way. The problem is that the equilibrium point is the origin of
the coordinate system, where the angle is undefined.

(b) The only equilibrium point is r∗ = 0. The Jacobian is ∂ṙ/∂r =
−a. Thus, |λI − J| = det(λ + a) = λ + a. Setting λ + a = 0, we
conclude that λ = −a, so the equilibrium point at r = 0 is stable.

We see here why, in geometric terms, we can neglect the θ equa-
tion: The angle is quite irrelevant at r = 0. If r was in equilibrium
at a non-zero value, then we would not in fact have an equilib-
rium point in the classical sense. We could still talk about stability
along the radial direction by analyzing the r equation however.

(c) If V (r, θ) is a Lyapunov function, then the following should hold:

• V (r∗, θ) = 0. Since r∗ = 0, this is in fact true.

• V (r, θ) > 0 for r 6= 0. Since V (r, θ) = r2 and r2 > 0 for any
r 6= 0, this is also true.

• V̇ < 0 everywhere except at the origin.

V̇ =
dV

dr

dr

dt
= (2r)(−ar) = −2ar2.

Since a > 0, this is clearly negative for any r 6= 0.

The following three properties make V (r, θ) a Lyapunov function
for the equilibrium at r = 0. This proves that r = 0 is approached
asymptotically from any initial conditions in the plane.
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