
Chemistry 4010 Fall 2019 Assignment 1
Solutions

1. (a) Possible units of the variables and parameters:

P : individuals
t: s
r: s−1

K: individuals

The following dimensionless variables can be formed:

τ = rt

p = P/K

Starting from the original equation rearrange as follows:

dP

r dt
=

dP

d(rt)
=
dP

dτ
= P (1− P/K).

Now divide both sides by K:

1
K
dP

dτ
=
d(P/K)

dτ
=
dp

dτ
=
P

K

(
1− P

K

)
= p(1− p).

The net result is

ṗ ≡ dp

dτ
= p(1− p).

(b) First, we need to find the equilibrium points: ṗ = 0 when

p† = 0 or p∗ = 1.

ṗ is a product of two factors, p and 1− p. We can determine the
sign of ṗ by thinking about the signs of these two factors. The
line naturally divides into three regions, as follows:

• If p < p†, then p < 0 and 1− p > 0. Therefore ṗ < 0.

• If p† < p < p∗, then p > 0 and 1− p > 0. Therefore ṗ > 0.

• If p > p∗, then p > 0 and 1− p < 0. Therefore ṗ < 0.

We can now sketch the flow on the line:
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(c) For any p > 0, p→ p∗ = 1. In dimensional form, this is P/K → 1,
or P → K. K is called the carrying capacity because it is the size
of the population that a given environment can support (“carry”).

2. (a) The full set of mass-action differential equations is

d[E]

dt
= −k1[E][S] + k−1[C] + k−2[C]

d[S]

dt
= −k1[E][S] + k−1[C]

d[C]

dt
= k1[E][S]− k−1[C]− k−2[C]

d[P]

dt
= k−2[C]

[P] doesn’t appear in any of the differential equations, so we can
neglect the last equation. Note that

d[E]

dt
+
d[C]

dt
= 0,

which implies that [E] + [C] = E0, where E0 is a constant. Thus,

[E] = E0 − [C].

The rate equations reduce to the planar system

d[S]

dt
= −k1[S] (E0 − [C]) + k−1[C]

d[C]

dt
= k1[S] (E0 − [C])− (k−1 + k−2)[C]

Dimensions of the variables and parameters:

[S], [C]: M
t: s
E0: M
k1: M−1s−1

k−1, k−2: s−1

2



Anticipating later developments in the course,1 it might make
sense to define

c = [C]/E0,

since it is then the case that 0 ≤ c ≤ 1. There is not quite so
natural a measurement scale for [S]. We choose, arbitrarily,

s = k1[S]/k−1.

Equally arbitrarily,
τ = k−2t.

Using these definitions, we get

d[S]

dt
=
k−1k−2
k1

ds

dτ
≡ k−1k−2

k1
ṡ

d[C]

dt
= k−2E0

dc

dτ
≡ k−2E0ċ

Therefore

ṡ =
k1

k−1k−2

{
−k1

k−1
k1

s (E0 − E0c) + k−1E0c

}
= −k1E0

k−2
s(1− c) +

k1E0

k−2
c.

Define
α = k1E0/k−2.

Therefore
ṡ = α (−s(1− c) + c) .

Similarly,

ċ =
1

k−2E0

{
k1
k−1
k1

s (E0 − E0c)− (k−1 + k−2)E0c

}
=
k−1
k−2

s(1− c)−
(
k−1
k−2

+ 1

)
c.

1The scaling used here is a completely arbitrary one, intended only to reduce the
number of parameters in the model. It is not a good scaling for any other purpose.
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Define
β = k−1/k−2.

Then
ċ = βs(1− c)− (1 + β)c.

Our pair of rate equations is therefore

ṡ = α (−s(1− c) + c)

ċ = βs(1− c)− (1 + β)c

(b) We first need to find the equilibrium point(s):

α (−s(1− c) + c) = 0 (1a)

βs(1− c)− (1 + β)c = 0 (1b)

Solve for s from (1a):

s =
c

1− c
Substitute this expression into (1b):

β
c

���1− c�
���(1− c)− (1 + β)c = 0

∴ c∗ = 0

∴ s∗ = 0

We will need the nullclines. Typically we would have s (the sub-
strate/reactant concentration) as the abscissa, and c as the ordi-
nate. We will therefore express the nullclines in the form c(s).

ṡ = 0 =⇒ cS =
s

s+ 1

ċ = 0 =⇒ cC =
βs

βs+ 1 + β
=

s

s+ 1 + 1/β

Since s + 1 + 1/β > s + 1, cC < cS at any given value of s. In
other words, the s nullcline lies above the c nullcline everywhere.
However, as s → ∞, cC → 1 and cS → 1, so the two nullclines
pinch together at large s. The nullclines are in fact hyperbolas.

Along the s axis, c = 0, and the velocity vector becomes v =
(ṡ, ċ) = (−αs, βs). Imagine starting a trajectory on the s axis.
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Here, v has the sign pattern (−,+). Since the c nullcline is below
the s nullcline, we will encounter the c nullcline first. On this
nullcline (by definition) ċ = 0, so the velocity vector here has the
sign pattern (−, 0). Note that the signs of the velocity components
can only change on a nullcline, which is how we know that ṡ is
still negative here. After we cross the nullcline, the sign pattern
of v becomes (−,−).

Along the c axis, s = 0, and the velocity vector is of the form
v = (αc,−c(1 + β)), i.e. the sign pattern of v is (+,−). Following
a trajectory, we will run into the s nullcline, where v will have the
sign pattern (0,−). After crossing this nullcline, the sign pattern
becomes (−,−). This puts us in the region between the nullclines.
Note that the same sign pattern has to be obtained in this region
whether you approach from the top or bottom, i.e. by crossing one
nullcline or the other.

We can now sketch the vector field, shown in Fig. 1.

We can now sketch the flow, essentially by tracing out curves that
follow the arrows. My sketch is shown in Fig. 2.

(c) My Xppaut input file is the following:

# Assignment 1, Michaelis-Menten mechanism
ds/dt = alpha*(-s*(1-c)+c)
dc/dt = beta*s*(1-c)-(1+beta)*c

param alpha=1, beta=1

done

The result of the “flow” and “nullcline” commands is shown in
Fig. 3. Your results may differ slightly depending on the parame-
ters you chose, on the scaling of your axes, and on the number of
grid points you used.
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Figure 1: Vector field for the Michaelis-Menten mechanism. The dashed red
curve is the c nullcline. The dotted blue curve is the s nullcline.
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Figure 2: Sketch of the trajectories (flow) for the Michaelis-Menten mecha-
nism. The dashed curve is the c nullcline. The dotted curve is the s nullcline.
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Figure 3: Michaelis-Menten flow and nullclines computed by Xppaut.
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