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1 Another equation for the entropy

The authors of your textbook missed an opportunity (by just a couple of easy steps) to derive
an important equation for the entropy. Equation (15.58) gives the following expression for
the entropy:

S = −k
∑

i

ai ln pi.

In this equation, ai is the number of molecules in state i out of N total molecules. If we
want the molar entropy, we divide equation (15.58) by the number of moles of molecules, i.e.
by N/NA:

Sm =
S

N/NA

= −kNA

∑
i

ai

N
ln pi.

If we have a sufficiently large number of molecules, then ai/N should equal pi. We get

Sm = −R
∑

i

pi ln pi. (1)

This turns out to be a really central equation which we will use later when we talk about
the statistical mechanics of ensembles other than the canonical ensemble. It also shows up
in communication theory, among other unexpected places.

Note that equation 1 implies the usual Boltzmann formula: Recall the central postulate
of statistical mechanics (textbook, p. 313):

Every possible microstate of an isolated system occurs with equal probability.

If pi is the probability that the system is in a particular microstate, then the central postulate
says that pi = 1/W , where W is the number of microstates. Then we have

Sm = −R

W∑
i=1

1

W
ln

1

W

= −RW
1

W
ln

1

W
,
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because all the terms in the sum are equal, and there are W of these.

∴ Sm = −R ln
1

W
= −R ln W.

2 An alternative derivation of equation (15.60)

Once we have a statistical definition of U , we can get all of the other state functions using
purely thermodynamic arguments. Recall that

∂S

∂T

∣∣∣∣
V

=
CV

T
.

∴
∫ S(T )

S(0)

=

∫ T

0

CV

T
dT,

or S(T )− S(0) =

∫ T

0

CV

T
dT.

We also know that can get CV from U :

CV =
∂U

∂T

∣∣∣∣
V

.

Finally, we know how to calculate U from the partition function:

U = kT 2 ∂(ln Q)

∂T

∣∣∣∣
V

.

We can now back-substitute:

CV = 2kT
∂(ln Q)

∂T

∣∣∣∣
V

+ kT 2 ∂2(ln Q)

∂T 2

∣∣∣∣
V

.

∴ S(T ) = S(0) +

∫ T

0

(
2k

∂(ln Q)

∂T

∣∣∣∣
V

+ kT
∂2(ln Q)

∂T 2

∣∣∣∣
V

)
dT

= S(0) + 2k (ln Q(T )− ln Q(0)) + k

∫ T

0

T
∂2(ln Q)

∂T 2

∣∣∣∣
V

dT.

This last integral can be evaluated using integration by parts. Let u = T and dv =
(∂2(ln Q)/∂T 2)V dT . Then du = dT and v = (∂(ln Q)/∂T )V . Thus,∫ T

0

T
∂2(ln Q)

∂T 2

∣∣∣∣
V

dT =

[
T

∂(ln Q)

∂T

∣∣∣∣
V

]T

0

−
∫ T

0

∂(ln Q)

∂T

∣∣∣∣
V

dT

= T
∂(ln Q)

∂T

∣∣∣∣
V

− [ln Q(T )− ln Q(0)] .

∴ S(T ) = S(0) + 2k (ln Q(T )− ln Q(0)) + kT
∂(ln Q)

∂T

∣∣∣∣
V

− k [ln Q(T )− ln Q(0)]

= S(0) + k (ln Q(T )− ln Q(0)) + +kT
∂(ln Q)

∂T

∣∣∣∣
V

.
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The value of the entropy at 0K is somewhat arbitrary. (The third law only guarantees that
S tends to a constant at 0K, without saying what that constant should be. Setting S(0) = 0
is a convention.) We can choose S(0) = k ln Q(0), and then we get

S = k ln Q + kT
∂(ln Q)

∂T

∣∣∣∣
V

.

If we then just recognize that the last term in this equation is U/T , we get equation (15.60).
These two very different derivations of the entropy (the one in the book and the one pre-

sented here) are yet another demonstration of the extent to which classical thermodynamics
and statistical mechanics agree.

3 Entropy and the canonical ensemble

Suppose that we have a gas of N indistinguishable molecules. The canonical partition
function is

Q =
qN

N !
.

or ln Q = N ln q − ln N !

≈ N ln q − (N ln N −N) .

The molecular partition function can be written

q = qT qR qV qE.

∴ ln Q ≈ N (ln qT + ln qR + ln qV + ln qE − ln N + 1) .

Now recall that

S =
∂

∂T
(kT ln Q)

∣∣∣∣
V

.

If we substitute ln Q into this equation, we see that we can clearly break up the calculation
into several pieces, one for each type of energy. There are however extra terms arising from
the expansion of ln N !. What do we do with those? We could just tack these terms on
separately at the end of the calculation. However, since they arise from the indistinguisha-
bility of the particles, which is due to the motion of the particles in the gas, by convention
we add those terms to the translational part of the entropy only. For any other entropy
contribution, we leave these terms out or, equivalently, we treat the particles as if they are
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distinguishable. Thus, we get

ST =
∂

∂T

{
NkT

[
ln

(qT

N

)
+ 1

]}∣∣∣∣
V

.

SR =
∂

∂T
(NkT ln qR)

∣∣∣∣
V

.

SV =
∂

∂T
(NkT ln qV )

∣∣∣∣
V

.

SE =
∂

∂T
(NkT ln qE)

∣∣∣∣
V

.

Because qT is always large at reasonable temperatures, ln (qT /N) is always positive, which
makes the translational entropy positive. The other entropy terms will also be positive
because the partition functions tend to increase with T . We could not guarantee that the
entropy contributions would all be positive if we added the terms arising from the ln N !
expansion to any of the entropy contributions other than the translational entropy.
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