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So far, we have focused all our attention on the canonical ensemble, which is an ensemble
of fixed, T , V and N . The canonical ensemble is a useful device for describing experiments in
which the temperature is fixed by a heat bath. Of course, we can imagine other possibilities.
Ensembles for some other common possibilities have in fact been devised. In this note, we
discuss the other two ensembles commonly used to describe chemical systems, as well as
their relationships to each other and to the canonical ensemble.

1 Some useful thermodynamic relationships

Recall that the chemical potential is the partial molar1 Gibbs energy of a system, i.e.

dG = V dP − S dT + µ dN

for a single-component system. Since G = H − TS,

dH = dG+ T dS + S dT = V dP + T dS + µ dN.

Similarly, since H = U + PV ,

dU = dH − P dV − V dP = T dS − P dV + µ dN.

Now if we isolate dS, we get

dS =
1

T
dU +

P

T
dV − µ

T
dN.

1We’re going to abuse both the terminology and the notation a little here. It is convenient to think in
molecules rather than moles in much of what will follow. We therefore use the number of molecules N and
express the chemical potential on a per molecule basis without changing our notation for this quantity.
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Therefore,

T−1 =
∂S

∂U

∣∣∣∣
V,N

. (1)

P/T =
∂S

∂V

∣∣∣∣
U,N

.

−µ/T =
∂S

∂N

∣∣∣∣
U,V

. (2)

2 The microcanonical ensemble

An isolated system is both thermally insulated and mechanically undisturbed. According to
the first law of thermodynamics, the internal energy of such a system is constant. We define
the following ensemble to describe isolated systems:

A microcanonical ensemble is an ensemble of fixed U , V and N .

The basic postulate of statistical mechanics says that every microstate of an ensemble
of isolated systems occurs with equal probability. Thus, if the ensemble has W different
microstates, the probability that any particular member of the ensemble is in a particular
microstate is

pi = 1/W,

since the sum of all the probabilities have to add to 1 and they all must be equal. Another
way to think about this equation is that the microcanonical partition function is just W .

The entropy of a microcanonical ensemble is calculated using the Boltzmann equation:

S = k lnW. (3)

Temperature can be defined for a microcanonical ensemble using equation 1. To apply
this equation, we first note that the number of microstates available to the system depends
on the energy, so W = W (U). This means that S depends on U . We can therefore write

T =

(
∂S(U)

∂U

∣∣∣∣
V,N

)−1

=

(
k
∂ lnW (U)

∂U

∣∣∣∣
V,N

)−1

. (4)

Once we have T , we can define other quantities that depend on it, like the Helmholtz
free energy:

A = U − TS = U − kT lnW.

Example 2.1 Suppose that we have a microcanonical ensemble, each member of which
consists of N harmonic oscillators of frequency ν holding a total of U = Qhν units
of energy, where Q is an integer and we have neglected zero-point energy. Earlier, we
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found that the number of configurations of Q quanta of energy spread over N oscillators
is

W =
(N − 1 +Q)!

(N − 1)!Q!
.

Suppose that N and Q are both large. This would be the case if, for instance, our
oscillators were lattice vibrations in a simple solid and the temperature was not too
low. Then

lnW = ln(N − 1 +Q)!− ln(N − 1)!− lnQ!

= (N − 1 +Q) ln(N − 1 +Q)− (N − 1 +Q)

− [(N − 1) ln(N − 1)− (N − 1)]− [Q lnQ−Q]

= (N − 1 +Q) ln(N − 1 +Q)− (N − 1) ln(N − 1)−Q lnQ

= (N +Q) ln(N +Q)−N lnN −Q lnQ

since we have already assumed that N and Q are large. We also have that Q = U/(hν),
so lnW depends on U . Thus,

lnW =

(
N +

U

hν

)
ln

(
N +

U

hν

)
− U

hν
ln

(
U

hν

)
−N lnN.

Now applying equation 4, we get (after some algebra)

T =

[
k

hν
ln

(
Nhν

U
+ 1

)]−1

=

[
k

hν
ln

(
N

Q
+ 1

)]−1

.

Let us consider a couple of extremes:

1. As N/Q → ∞, T → 0. This would be the case where there were few quanta
stored relative to the number of oscillators.

2. As N/Q→ 0, T →∞. This limit corresponds to the case where there are many
quanta for each oscillator.

Intuitively, we expect the temperature to ramp up with the amount of energy stored
(i.e. with the value of Q). Both of these results are consistent with this intuition.

3 The grand canonical ensemble

Both the microcanonical and canonical ensembles deal with systems with a fixed number of
particles N (or, in general, fixed values of the numbers of particles of each type, N1, N2, . . . ).
However, the number of molecules of a given type in a chemical system at equilibrium is not
generally fixed.2 Due to chemical reactions, the number of molecules of each type fluctuates
with time. These fluctuations are generally fairly small, but they are not unimportant from
the point of view of understanding how chemical systems behave. We address this problem
by fixing the chemical potential instead of the number of particles:

2We won’t even touch the much more delicate issue of systems which are out of equilibrium.
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A grand canonical ensemble is an ensemble of fixed T , V and µ.

Imagine that we put two systems of constant volume together in such a way that they
can exchange energy and particles. This could be as simple as opening a door between two
rigid compartments. The two compartments are not necessarily the same size. In fact, we
will eventually let one become much larger than the other. The composite system is isolated
from the outside world, i.e. it is a sample from a microcanonical ensemble. We now ask
what equilibrium conditions hold in such a system. Suppose that the energies of the two
subsystems are E1 and E2, and that the numbers of molecules in each subsystem are N1 and
N2. Since the system is isolated, the total energy and number of molecules are conserved:

U1 + U2 = UT ,

and N1 +N2 = NT ,

where UT and NT are constants. On the other hand, because energy and particles flow
freely between the two systems, U1, U2, N1 and N2 all fluctuate with time. The number
of microstates in a microcanonical ensemble depends in general on U , N and V . In this
particular case, we are less interested in the dependence on V since the volumes of the two
compartments are fixed, unlike Ui and Ni. The total number of microstates of the composite
system is the product of the number of microstates of the two subsystems:

W (UT , NT ) = W1(U1, N1)W2(U2, N2) = W1(U1, N1)W2(UT − U1, NT −N1).

The number of microstates in each subsystem will depend on how the energy and particles
are shared between the two compartments, so the overall number of microstates depends on
U1 and N1 for fixed values of UT and NT . As we have seen previously, there will however
be a dominant configuration which is overwhelmingly more probable than any other. This
is the configuration that maximizes W (UT , NT ). For the composite microcanonical system,
the entropy is a strictly increasing function of W (equation 3), so maximizing W is the same
as maximizing S. According to the second law of thermodynamics, the state of maximum
entropy is of course the equilibrium state of the system. Entropy is additive, so

S = S1(U1, N1) + S2(UT − U1, NT −N1).

To find the equilibrium conditions, differentiate this equation with respect to both U1 and
N1 and set these derivatives equal to zero:

∂S1

∂U1

∣∣∣∣
V,N1

+
∂S2

∂U1

∣∣∣∣
V,N1

=
∂S1

∂U1

∣∣∣∣
V,N1

− ∂S2

∂U2

∣∣∣∣
V,N1

= 0.

∂S1

∂N1

∣∣∣∣
V,U1

+
∂S2

∂N1

∣∣∣∣
V,U1

=
∂S1

∂N1

∣∣∣∣
V,U1

− ∂S2

∂N2

∣∣∣∣
V,U1

= 0.

To obtain the second equality in each of these two equations, we applied the chain rule to
S2(U2, N2) = S2(UT −U1, NT −N1). Now we apply equations 1 and 2 and rearrange slightly:

1

T1

=
1

T2

.

µ1

T1

=
µ2

T2

.
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The first equation tells us that the temperatures of the two subsystems will be the same at
equilibrium, perhaps not surprisingly. The second equation combined with the first tells us
that their chemical potentials will also be the same. Thus, this construction gives us two
members of a grand canonical ensemble.

Now that we know that our two subsystems belong to a grand canonical ensemble, we
would like to determine the probability of obtaining one of these states, which in turn will
lead us to the grand canonical partition function. Let us consider the entropy of subsystem
2:

S2(UT − U1, NT −N1) = k lnW2(UT − U1, NT −N1),

or W2(UT − U1, NT −N1) = eS2(UT−U1,NT−N1)/k.

Suppose that subsystem 2 is much larger than subsystem 1, i.e. that U1 � UT and N1 � NT .
Then, by Taylor’s theorem,

S2(UT−U1, NT−N1) ≈ S2(UT , NT )−U1
∂S2

UT

∣∣∣∣
V,NT

−N1
∂S2

∂NT

∣∣∣∣
UT ,V

= S2(UT , NT )−U1

T
+
N1µ

T
,

again using equations 1 and 2. The number of microstates of system 2 is therefore

W2(UT − U1, NT −N1) = eS2(UT ,NT )e−(U1−N1µ)/(kT ) = W2(UT , NT )e−(U1−N1µ)/(kT ).

The number of microstates should be proportional to the probability of subsystem 1 having
U1 units of energy and N1 particles. The only term in this equation which depends on U1

and N1 is the last one, so the probability of having U1 units of energy and N1 particles in
the grand canonical ensemble must be proportional to this term. Thus we have

p(U,N) =
e−(U−Nµ)/(kT )

QG

, (5)

dropping the subsystem subscript, where QG is grand canonical partition function.
This is obtained by summing the probability over all possible values of U and N . Since the
exponential factors into e−U/(kT )eNµ/(kT ), the sum over all possible values of U just gives a
factor of the canonical partition function, Q. The result is

QG(µ, T, V ) =
∞∑
N=0

eNµ/(kT )Q(T, V,N). (6)

The probability that a particular member of a grand canonical ensemble has energy U
and contains exactly N particles at a particular instant is given by equation 5. We can now
calculate the statistics of the variables U and N in an open system that is in equilibrium
with it thermal and chemical surroundings. In particular, we might be interested in the size
of the fluctuations in U or N . Here we tackle the fluctuations in N . As an exercise, I suggest
that you try to derive an equation for the size of the fluctuations in U .

The standard deviation is an obvious measure of the size of the fluctuations in a variable.
Recall that it is calculated by

σ2
N = 〈N2〉 − 〈N〉2,
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taking the statistics of N as an example. The averages are calculated as follows:

〈N〉 =
∑
U

∞∑
N=1

Np(U,N)

=
∑
U

∞∑
N=1

Ne−(U−Nµ)/(kT )/QG

=
1

QG

∑
U

∞∑
N=1

Ne−(U−Nµ)/(kT )

=
1

QG

∞∑
N=1

NeNµ/(kT )Q(T, V,N).

∴ QG〈N〉 =
∞∑
N=1

NeNµ/(kT )Q(T, V,N).

Now we use a trick. (There is no reason you should have seen this coming.) Differentiate
this equation with respect to µ:

〈N〉
∞∑
N=0

N

kT
eNµ/(kT )Q(T, V,N) +QG

∂〈N〉
∂µ

∣∣∣∣
T,V

=
∞∑
N=0

N2

kT
eNµ/(kT )Q(T, V,N).

∴ 〈N〉 1

QG

∞∑
N=0

NeNµ/(kT )Q(T, V,N) + kT
∂〈N〉
∂µ

∣∣∣∣
T,V

=
1

QG

∞∑
N=0

N2eNµ/(kT )Q(T, V,N).

∴ 〈N〉2 + kT
∂〈N〉
∂µ

∣∣∣∣
T,V

= 〈N2〉. (7)

To get this last relationship, we used

〈N2〉 =
1

QG

∞∑
N=1

N2eNµ/(kT )Q(T, V,N),

as well as some intermediate results from above. We can rearrange equation 7 to

σ2
N = 〈N2〉 − 〈N〉2 = kT

∂〈N〉
∂µ

∣∣∣∣
T,V

. (8)

Recall that, for a single-component system, G = Nµ. If the number of molecules is not
fixed, then the average free energy should be 〈G〉 = 〈N〉µ. If we take a differential of this
expression, we get d〈G〉 = µ d〈N〉+ 〈N〉 dµ. We also have d〈G〉 = −S dT + V dP + µ d〈N〉.
If we set these two equations for d〈G〉 equal to each other, we get 〈N〉 dµ = −S dT + V dP .
At constant temperature, this relationship becomes dµ = (V/〈N〉) dP , but V/〈N〉 = Vm,
the molar volume,3 so dµ = Vm dP . This equation holds when we change these variables

3Again, I’m abusing the terminology a little here since this is the volume per molecule, not per mole.
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by changing any independent at constant temperature. In particular, we could change the
molar volume:

∂µ

∂Vm

∣∣∣∣
T

= Vm
∂P

∂Vm

∣∣∣∣
T

. (9)

This equation will hold regardless of how we change the molar volume. We can change the
molar volume either by changing 〈N〉 at constant V or V at constant 〈N〉. We do the former
on the left-hand side, and the latter on the right-hand side:

∂µ

∂Vm

∣∣∣∣
T,V

=
∂µ

∂〈N〉

∣∣∣∣
T,V

∂〈N〉
∂Vm

∣∣∣∣
T,V

.

∂Vm
∂〈N〉

∣∣∣∣
T,V

= − V

〈N〉2
.

∴
∂µ

∂Vm

∣∣∣∣
T,V

= −〈N〉
2

V

∂µ

∂〈N〉

∣∣∣∣
T,V

.

∂P

∂Vm

∣∣∣∣
〈N〉,T

=
∂P

∂V

∣∣∣∣
〈N〉,T

∂V

∂Vm

∣∣∣∣
〈N〉,T

= 〈N〉 ∂P
∂V

∣∣∣∣
〈N〉,T

.

Now going back to equation 9, we get

−〈N〉
2

V

∂µ

∂〈N〉

∣∣∣∣
T,V

= V
∂P

∂V

∣∣∣∣
〈N〉,T

.

∴
∂〈N〉
∂µ

∣∣∣∣
T,V

= −〈N〉
2

V 2

∂V

∂P

∣∣∣∣
〈N〉,T

.

However, the isothermal compressibility is defined by

κ = − 1

V

∂V

∂P

∣∣∣∣
N,T

.

∴
∂〈N〉
∂µ

∣∣∣∣
T,V

=
κ〈N〉2

V
.

We can now go back to equation 8:

σ2
N =

kTκ〈N〉2

V
.

∴
σN
〈N〉

=

√
kTκ

V
.

This is the result we were looking for. From this equation, we can predict the relative size
of fluctuations in particle numbers in an open system, for instance in a particular volume of
a gas.
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Example 3.1 For an ideal gas, κ = 1/P , so

σN
〈N〉

=

√
kT

PV
=

√
1

N
.

If we have a volume large enough to hold (on average) 1 mol of gas, then we expect
relative fluctuations in the number of molecules in any given measurement of the order
of 1/

√
NA ≈ 10−12. These would be undetectable. On the other hand, if we are

studying a reaction in a small volume of a gas at a very low density, we might begin
to see fluctuations.

4 How the ensembles are related

The names “microcanonical”, “canonical” and “grand canonical” suggest a hierarchy of
ensembles. This is intentional.

Suppose that we have a very large grand ensemble consisting of a number of identical
volumes which communicate with each other. Imagine that we simultaneously shut all the
doors connecting these volumes. The number of molecules in each volume is now fixed.
We can extract from the original grand ensemble a set of canonical ensembles by collecting
together all the volumes which have the same value of N . In a sense then, a grand ensemble
is an ensemble of canonical ensembles. We can see this relationship in the form of the grand
partition function (equation 6): It is an average of canonical partition functions weighted by
a function of N .

Similarly, suppose that we have a very large canonical ensemble consisting of a number
of identical replicas in a thermostat device at temperature T . If we simultaneously isolate
all the replicas, we now have a number of systems each of which has a fixed value of U . We
can make microcanonical ensembles by collecting together all the members of the original
canonical ensemble with the same value of U .

The description of each ensemble tells us what application it is intended for. However, we
often cheat and use whatever ensemble is convenient in calculations, regardless of the actual
system we are trying to study. Why can we do that? The reason can be glimpsed in example
3.1: Fluctuations from the ensemble average are typically very small. This applies to any
quantity which is variable in an ensemble, so for example the fluctuations in temperature
in a microcanonical ensemble, even though they are allowed since T is not held constant in
this ensemble, are very small. It therefore makes very little difference in practice whether
we hold U or T constant, or N or µ, unless the system we are interested in is either very
small or has some mechanism for amplifying fluctuations.
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