
Chemistry 4000/5000/7001 Spring 2009 Test 1 Solutions

1. (a) True. At very low temperatures, only the ground state is occupied, and higher
states are inaccessible, so U is effectively constant.

(b) False. At higher temperatures, the population of an energy level is proportional
to its degeneracy, so an excited state could have a larger population than the
ground state if the former has a larger degeneracy than the latter.

(c) False. This is an approximation which neglects coupling between (e.g.) rotational
and vibrational motions.

(d) False. The Boltzmann distribution is the dominant distribution, but it is theoret-
ically possible, if unlikely, for a system to have a different distribution of energy
at some point in time.

(e) True. The energy of the system in this case is a sum of molecular energies. If
intermolecular forces are not negligible, then the energy of the system also depends
on the interaction energy between molecules, which is not a property of a single
molecule.

2. (a) kT = (0.695 035 6 cm−1K−1)(100 K) = 69.5 K� B. We should be able to use the
integrated form of the partition function.

(b)

qR =
kT

σB

=
(0.695 035 6 cm−1K−1)(100 K)

(1)(1.345 257 6 cm−1)
= 51.7.

p(J) =
(2J + 1)e−J(J+1)B/(kT )

qR

.

∴ p(3) =

[2(3) + 1] exp

(
−3(3 + 1)(1.345 257 6 cm−1)

(0.695 035 6 cm−1K−1)(100 K)

)
51.7

= 0.107.

3. (a) The partition function is

qE =
4∑

i=1

gie
−εi/(kT ).

We can just plug our data directly into Maple to calculate the partition function
with T = 298.15 K. The result is qE = 7.83. Note that the bottom three energy
levels include nine states. The value of the electronic partition function tells us
that these levels are all occupied to a significant extent at 25◦C. Due to the very
large energy gap and based on the value of the partition function, we can infer
that the fourth level is essentially unoccupied at this temperature.
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(b) The translational internal energy is just 3
2
RT = 3718 J/mol. The electronic inter-

nal energy is calculated by

UE,m = RT 2 ∂ ln qE

∂T

∣∣∣∣
V

.

Using Maple and the relationship R = kNA, I get

UE,m =
NA

∑4
i=1 giεie

−εi/(kT )

qE

= 338 J/mol.

The molar internal energy is therefore

Um = UE,m + UT,m = 4057 J/mol.

4. The molar Gibbs free energy is calculated by

G = −RT

[
ln Q− V

∂ ln Q

∂V

∣∣∣∣
T

.

]
The canonical partition function is Q = qN/N !. The only quantity in this calculation
which involves molecular properties is q. The molecular partition function is calculated
by

q = qT qRqV qE,

i.e. the product of the translational, rotational, vibrational and electronic partition
functions. We will consider each of these contributions in turn.

The only molecular parameter that the translational partition function depends on is
the molecular mass.

Fluorobenzene is nonlinear, so it has three rotational modes. To calculate qR, we
therefore need the three rotational constants BA, BB and BC . We also need the
symmetry number σ, which has the value σ = 2 for fluorobenzene.

Fluorobenzene has 3(12) − 6 = 30 vibrational modes. We need the frequencies
(probably in wavenumber units) for all of these vibrational modes.

For the electronic partition function, we need the energies and degeneracies of any
energy levels which are within a small multiple of kT (including the ground state itself,
of course).

Bonus: The formation reaction is

6C(s) +
1

2
F2(g) +

5

2
H2(g) → C6H5F(g).

In addition to G◦ for fluorobenzene, we need to calculate G◦ for each of the reactants.
For H2 and F2, these calculations are analogous to those for fluorobenzene, except that
these are diatomics, so there is only one value of B and one vibrational frequency for
each. Graphite is a solid. The only two possible contributions to Q for graphite are
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Figure 1: Schematic energy level diagrams for two molecules A and B.

vibrational and electronic contributions. We haven’t talked much about solids, but
let’s just assume that we can calculate Q for graphite. Once we have the standard
Gibbs energy for each of these compounds, we still have a problem: These will not
have been computed with respect to a common zero of energy. We therefore need to
correct to a common zero by adding the difference in ground-state energies, ∆E0:

∆fG
◦
m(C6H5F, g) = G◦

m(C6H5F, g)−
[
6G◦

m(C, s) +
1

2
G◦

m(F2, g) +
5

2
G◦

m(H2, g)

]
+ ∆E0.

5. The equilibrium constant for this reaction is given by the expression

K =
qB

qA

e−∆E0/(kT ).

Figure 1 shows the energy level diagrams of A and B for a case that would favor B.
These diagrams have two features which would favor the formation of B:

(a) The ground-state energy of B is lower than that of A, i.e. ∆E0 is negative.

(b) B has a greater density of energy levels than A, i.e. qB > qA. (This only matters
if kT is not much greater than the energy level spacing of B.)
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