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Langevin equations

The Langevin equation
Langevin equations are an alternative way to treat diffusion in
which we focus on a single particle.

This particle experiences a drag force (as seen previously in
the theory of diffusion) as well as random forces from
collisions with the solvent.

The separation of the force into drag and a random force is
somewhat artificial: Both arise from collisions with the
solvent. This separation recognizes that, if the particle has
velocity v , this creates an asymmetry in the interaction with
the solvent which can be separated from the (on average)
isotropic term due to random motion of the solvent.

In addition to interaction with the solvent, imagine that there
is a potential energy V (x).

The drag force is −fv , and for now we write the random force
as Fr (t).
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The Langevin equation (continued)

The equations of motion for this system are

F = ma = m
dv

dt
= −dV

dx
− fv + Fr (t)

dx

dt
= v

This is a version of a Langevin equation.

This equation is a stochastic differential equation, i.e. a
differential equation with random terms.

To work with this equation, we need to say something about
the randomly fluctuating force Fr (t).
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The Langevin equation (continued)

The standard assumptions on Fr (t) are that

The time average of Fr (t) is zero.
The force varies rapidly in time so that its values at two
different times t and t ′ are uncorrelated.
Mathematically, we write

〈Fr (t)Fr (t
′)〉 = Γδ(t − t ′)

where the angle brackets denote a time average, here used to
compute a correlation, δ(·) is a delta function, and Γ is a
constant to be determined later.
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The Langevin equation
Ordinary diffusion

In general, the Langevin equation is difficult to solve.

Note that the very idea of “solving” an equation with a
randomly fluctuating term needs to be defined.

For now, we focus on the case of ordinary diffusion
(V (x) = 0).
Our focus will be on the statistical properties of v .

The equation for v is

dv

dt
= − f

m
v +

1

m
Fr (t)

The formal solution of this equation with initial condition
v = v0 is

v(t) = v0 exp (−ft/m)+
1

m
exp (−ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′
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The Langevin equation
Ordinary diffusion (continued)

v(t) = v0 exp (−ft/m) +
1

m
exp (−ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′

If we are given Fr (t), then we can compute v(t) from the
above formula.
We can average v over an ensemble of particles each starting
from the same initial condition but subject to its own
realization of the random force Fr :

〈v(t)〉 = v0 exp (−ft/m)

+
1

m
exp (−ft/m)

∫ t

0
〈Fr (t ′)〉 exp(ft ′/m) dt ′

= v0 exp (−ft/m)

since 〈Fr (t)〉 = 0.
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The Langevin equation
Ordinary diffusion (continued)

v(t) = v0 exp (−ft/m) +
1

m
exp (−ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′

Squaring this equation, we get

v2 = v20 exp (−2ft/m)

+
2v0
m

exp (−2ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′

+
1

m2
exp (−2ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′

×
∫ t

0
Fr (t ′′) exp(ft ′′/m) dt ′′
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The Langevin equation
Ordinary diffusion (continued)

∴ v2 = v20 exp (−2ft/m)

+
2v0
m

exp (−2ft/m)

∫ t

0
Fr (t ′) exp(ft ′/m) dt ′

+
1

m2
exp (−2ft/m)

∫ t

0
dt ′
∫ t

0
dt ′′ exp[f (t ′ + t ′′)/m]Fr (t ′)Fr (t ′′)

We now average over an ensemble of particles with a common
initial velocity.

Because 〈Fr (t ′)Fr (t ′′)〉 = Γδ(t ′ − t ′′), we get

〈v2〉 = v20 exp(−2ft/m)+
Γ

m2
exp(−2ft/m)

∫ t

0
dt ′ exp(2ft ′/m)
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The Langevin equation
Ordinary diffusion (continued)

∴ 〈v2〉 = v20 exp(−2ft/m) +
Γ

2mf
exp(−2ft/m) exp(2ft ′/m)

∣∣t
0

= v20 exp(−2ft/m) +
Γ

2mf
[1− exp(−2ft/m)]

Now note

lim
t→∞
〈v2〉 =

Γ

2mf

The kinetic theory of matter gives 〈v2〉 = kBT/m so

Γ

2f
= kBT

This is a version of the fluctuation-dissipation theorem
because it relates the size of the fluctuations (controlled by Γ)
to the rate of dissipation (f ).
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The Langevin equation
Ordinary diffusion (continued)

Finally note that, since D = kBT/f and Γ = 2fkBT ,

Γ = 2f 2D

Γ is therefore proportional to the diffusion coefficient.

The larger the random force, the faster diffusion will be at a
given temperature. coefficient.
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Simulation of the Langevin equation

For an ordinary differential equation, we get a simple
numerical method, Euler’s method, by replacing the
derivatives by ratios of small changes, e.g. dv/dt ≈ ∆v/∆t.
We calculate ∆v and ∆x for a small ∆t, then use these to
update v and x .

The random force term doesn’t obey the normal rules of
calculus. Instead, we need to use a special stochastic calculus,
known as Itô calculus, to approximate this term when ∆t 6→ 0.
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Simulation of the Langevin equation

dv

dt
= − f

m
v +

1

m
Fr (t)

dx

dt
= v

For a force with the time autocorrelation
〈Fr (t)Fr (t ′)〉 = Γδ(t − t ′), the Euler-Maruyama scheme for
the Langevin equation is

∆v = − fv

m
∆t +

√
Γ

m
N (1)

√
∆t

∆x = v∆t

These ∆’s are added to the corresponding variables at each
step.
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Simulation of the Langevin equation (continued)

Suppose we want to simulate the diffusion of sucrose in water
for 1 ns at 20 ◦C.

D = 5.7× 10−10 m2s−1

m = 5.68× 10−25 kg

Use

f = kBT/D

Γ = 2fkBT
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Simulation of the Langevin equation (continued)
Time step selection

We want |∆v/v | to be reasonably small.

The rms speed
√
kBT/m gives a typical value for v .

The first part of ∆v/v is (f /m)∆t.

(f /m)∆t � 1 =⇒ ∆t � m/f

The second part of ∆v/v is of amplitude |
√

Γ
√

∆t/mv |.∣∣∣∣∣
√

Γ
√

∆t

mv

∣∣∣∣∣ ∼
√

Γ
√

∆t

m

√
mkBT =

√
Γ

mkBT

√
∆t � 1

=⇒ ∆t � mkBT/Γ

Γ = 2fkBT =⇒ ∆t � m

2f

In this context “�” doesn’t have to be tiny.

Choose ∆t = m/10f (but smaller = more accurate)
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Simulation of the Langevin equation (continued)
A check on the data

We should have 〈v2〉 = kBT/m.
It’s pretty easy to check that this is approximately true after
the program has run.

Now let’s write some code. . .
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From Langevin to Kramers

The Langevin equation tells us how to calculate realizations
(individual particle trajectories) of the diffusion process.

We could also ask how the probability density for position x
and velocity v evolves. This is given by the Kramers equation.
Specifically, let ρ(x , v) dx dv be the probability that
simultaneous measurements of the position and velocity are
between x and x + dx , and v and v + dv , respectively.

The derivation of the Kramers equation is time-consuming, so
I just present it here without proof:

∂ρ

∂t
+ v

∂ρ

∂x
− 1

m

∂V

∂x

∂ρ

∂v
=

f

m

[
∂

∂v
(vρ) +

kBT

m

∂2ρ

∂v2

]
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Kramers equation
Interpretation and application in kinetics

The various terms in the Kramers equation have the same
meanings as in the Langevin equation.
In particular, f is a drag coefficient for a particle moving
through a fluid and V is the potential energy of the particle.

Now consider a chemical reaction in solution, possibly but not
necessarily a simple isomerization A
 B.

The mass m is an effective mass for the reactive mode (e.g. a
reduced mass µ from Gaussian).
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Kramers equation
Interpretation and application in kinetics (continued)

The reaction is associated with a potential energy surface.
Along the reaction coordinate x , the PES reduces to a
potential energy curve:

x

(x)V

Any rearrangements of the reactants to products (motion
along x) requires the solvent molecules in the immediate
neighborhood to move, causing drag. Accordingly, the motion
of a particle through a solvent experiencing drag with the
added force due to the potential energy is a good model for a
chemical reaction in solution.
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Kramers equation
Effects of the solvent

The solution of the Kramers equation for a double-well
potential introduces a correction (i.e. a transmission
coefficient) to transition-state theory.
The following is valid in the medium- to high-friction regime
(generally appropriate for reactions in solution):

κK =

[
1 +

(
f

2µ‡ω‡

)2
]1/2

− f

2µ‡ω‡

ω‡ is the frequency associated with the reactive mode and µ‡

is the corresponding reduced mass.
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Kramers equation
Effects of the solvent

κK =

[
1 +

(
f

2µ‡ω‡

)2
]1/2

− f

2µ‡ω‡
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Kramers equation
The large friction limit

κK =

[
1 +

(
f

2µ‡ω‡

)2
]1/2

− f

2µ‡ω‡

To study the high-friction limit, define q = 2µ‡ω‡/f , and take
a Taylor expansion about q = 0:

κK =
(
1 + q−2

)1/2 − q−1

= q−1
[
(q2 + 1)1/2 − 1

]
∴ qκK = (q2 + 1)1/2 − 1

≈ 0 + 0q +
1

2
(1)q2

∴ κK ≈ q/2 = µ‡ω‡/f
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Kramers equation
The large friction limit (continued)

κK ≈ µ‡ω‡/f

At low velocities, f is proportional to η.
Example: Stokes-Einstein f = 6πRη

Prediction: the transmission coefficient should decrease with
increasing solvent viscosity.

This has been confirmed experimentally.
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Kramers equation
The large friction limit (continued)

Why is the transmission coefficient small for large friction?

The large friction in this regime rapidly kills any momentum in
the reactive mode, making the random force (i.e. momentum
transfer due to collisions with solvent) more important.

This causes the crossing of the transition state a random
process, and one that is essentially undirected.

In other words, there are many crossings and recrossings of
the barrier for a typical reactive event, and many cases where
reactants having reached the transition state return to the
reactant valley.
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Applying Kramers theory

κK =

[
1 +

(
f

2µ‡ω‡

)2
]1/2

− f

2µ‡ω‡

There is one significant problem applying this equation: we
don’t know how to compute f for motion along a reaction
coordinate.

We’re going to have to improvise.
What is moving during the reaction? How large a profile does
it present to the solvent?
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Example: H2 +
•OH −−→ •H + H2O

Last lecture, we found that a straightforward TST calculation
dramatically overestimated this rate constant.

Transition state:

The largest amplitude motion involves a hydrogen atom.
Assume that R ≈ RH = 1.10 Å (vdW radius).

ηH2O = 8.91× 10−4 Pa s at 25 ◦C, so

f = 6πRη = 1.85× 10−12 N s m−1



Kramers theory

Kramers equation

Example: H2 +
•OH −−→ •H + H2O

From Gaussian, ν̃‡ = 912 cm−1 ≡ and
µ‡ = 1.1155 amu ≡ 1.8523× 10−27 kg.

ω‡ = 2πcν‡ = 1.72× 1014 s−1

f

2µ‡ω‡
= 2.90

κK =

[
1 +

(
f

2µ‡ω‡

)2
]1/2

− f

2µ‡ω‡

= 0.17

We had previously calculated kTST = 2.9× 109 L mol−1s−1, so
the corrected value is

kKramers = κKkTST = 4.9× 108 L mol−1s−1

This is still 10 times larger than the experimental value.
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Example: H2 +
•OH −−→ •H + H2O

Lots of possible reasons for the mismatch:

TST tends to overestimate rate constants.
f underestimated
•OH is not a normal solute; perhaps its interactions with the
solvent play a role we have not taken into account.
(Grotthuss mechanism delocalization of radical?)

Directly applying TST in solution is difficult. . .

but we can get lots of insight into factors that affect the rate
from TST.
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