
The kinetic Monte Carlo method

Foundations of Chemical Kinetics Lecture 16:
The kinetic Monte Carlo method

The multi-molecule simulation method

Marc R. Roussel

November 17, 2021



The kinetic Monte Carlo method

Simulating many molecules
What we have so far is a method for simulating a single
molecule.
We can repeat single-molecule simulations many times to
collect statistics.

Often, we are less interested in detailed single-molecule
trajectories than in the evolution of a probability distribution.

KMC can handle this case, too. The basic idea is that if wijdt
is the probability that a single molecule executes a jump from
state i to state j in time dt, then if there are Ni molecules in
state i , the probability that one of them jumps from state i to
state j in time dt is Niwijdt provided dt is sufficiently small
that there is a negligible probability that there is more than
one jump in that time.

Instead of tracking the states of individual molecules, we will
keep track of how many molecules are in each state.



The kinetic Monte Carlo method

System, states and propensities

The system consists of a number of molecules distributed over
the accessible molecular states.

The state of the system is a vector of populations of
molecules in each molecular state: N = (N1,N2, . . . ,Ns , . . .).

The propensity of a jump from molecular state i to molecular
state j is aij = Niwij .
This is a probability per unit time of one molecule making a
jump from molecular state i to state j .

The KMC algorithm for many molecules is much the same,
except that

Propensities are used to determine jump probabilities.
Instead of updating the state of one molecule, we update the
populations of the “from” and “to” states.



The kinetic Monte Carlo method

The Kinetic Monte Carlo (KMC) Algorithm
Simulating a population of molecules

Initialize:

1 Store the wij values.

2 Store the initial Ni populations.

3 Set t = 0.



The kinetic Monte Carlo method

The Kinetic Monte Carlo (KMC) Algorithm
Simulating a population of molecules (continued)

At each step:

1 Calculate the propensities aij = wijNi .

2 Calculate atot =
∑

i ,j aij .

3 Generate two random numbers r1,2 ∈ (0, 1).

4 Use r1 to generate the time to next jump:

∆t = − ln r1/atot



The kinetic Monte Carlo method

The Kinetic Monte Carlo (KMC) Algorithm
Simulating a population of molecules (continued)

5 Use r2 to pick the destination of the jump as follows:

1 Arrange the aij so that they are stored in a vector â.
The best way to do this will depend on the structure of the
problem.

2 Find the smallest k such that

k∑
`=1

â` > r2atot

then work backwards to determine the (i , j) values
corresponding to k .
How we find the (i , j) values corresponding to k will depend on
how we ‘linearized’ the aij values.



The kinetic Monte Carlo method

The Kinetic Monte Carlo (KMC) Algorithm
Simulating a population of molecules (continued)

6 Add ∆t to the simulation time.

7 Adjust populations according to the jump:

Ni = Ni − 1

Nj = Nj + 1

8 Recalculate (at least) aik and ajk ∀k .



The kinetic Monte Carlo method

A simple model of a unimolecular reaction

12

w
r

w
23

w
34

w
45

w
32

w
43

w
54

w
21

w

Assume equally spaced levels

Landau-Teller jumps between
adjacent levels

Irreversible reaction from the
top level, i.e. jump to an
absorbing ‘product’ state with
‘rate constant’ wr

Strong collision assumption
for deactivation



The kinetic Monte Carlo method

A simple model of a unimolecular reaction (continued)
Strong collision assumption implies
wdown ≡ w21 = w32 = w43 = w54 = ZA = σūrefL[B] (B =
bath gas)

Assume wdown = 109 s−1.

From the equilibrium conditions,
wup ≡ w12 = w23 = w34 = w45 = ZAe

−∆ε/kBT

Assume wup = 0.8wdown.

wr is related to the rate of IVR and crossing the
transition-state dividing surface.

Assume wr = 1013 s−1.

rate constant =
rate of reaction

number of unreacted molecules
= − 1

N

dN

dt
=

−d lnN

dt
where N =

∑
Ni .



The kinetic Monte Carlo method

A simple model of a unimolecular reaction (continued)

Initial condition: N1 = N, N2 = N3 = N4 = N5 = 0

Organization of the â vector:
[a12 a23 a34 a45 a21 a32 a43 a54 ar ]



The kinetic Monte Carlo method

Some useful Matlab knowledge
If you run a program repeatedly, there is a chance that data
stored in previous runs will interfere with your current
calculation. The clear command clears all variables.

We can operate on parts of a vector by referring to ranges of
indices, e.g. if a is the propensity vector of length 9, N is the
population vector of length 5, and wup is a scalar,

a(1:4) = wup*N(1:4);

will calculate the propensities of the upward jumps and store
them in the first 4 elements of the propensity vector.

Because vector operations are very efficient in Matlab, it may
be advantageous to do a few vector operations rather than
write something more complicated to try to save arithmetic
operations.

The keyword end can be used as an index into a vector to
denote the last element of the vector.



The kinetic Monte Carlo method

Some useful Matlab knowledge
Conditional execution

The ability to only run code if certain conditions are met is
central to a lot of programming.
while loops provide a form of conditional execution.

if. . . elseif. . . else structures are often useful.
General syntax:

if condition
code to execute

elseif another condition
alternative code

else

Default code
end



The kinetic Monte Carlo method

Some useful Matlab knowledge
Conditional execution (continued)

elseif is optional, but you can have many elseif

statements if needed.

else is optional.
If present, it is executed if none of the previous conditions are
true.

The conditions are tested in order. Once a true condition is
found, the code in that block is executed, and then the
program skips to end of the if control structure.
No more than one statement in an if control structure will
ever be executed.



The kinetic Monte Carlo method

Two powerful Matlab functions
cumsum() calculates cumulative sums of a vector.

Example: cumsum(a) returns the vector
(a1, a1 + a2, . . . ,

∑
` a`).

Note that atot is just the last element returned by
cumsum().

find() has many useful options for locating quantities
matching a particular condition.
The KMC jump destination selection rule, finding the
smallest k for which

k∑
`=1

â` > r2atot

can be coded as follows in Matlab:

a_sums = cumsum(a);

atot = cumsum(end);

k = find(a_sums > r2*atot,1,’first’);



The kinetic Monte Carlo method

Fitting and plotting in Matlab

coeffs = polyfit(x,y,degree) fits a polynomial of the
selected degree to (x , y) data.
coeffs is a vector of coefficients stored in
descending order of exponent.

hold tells Matlab to keep adding to a plot rather than
erasing and starting over.
hold off tells Matlab that the plot is complete.


