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Derivation of the master equation

Transition rates

Suppose that Ps(t) is the probability that a system is in a
state s at time t.

The states are members of a set S of allowed states.

Transitions occur randomly between the different states.

For each pair of states r and s, there is a transition rate wrs

such that, if the system is in state r at time t, the probability
that the system jumps to state s during the subsequent time
interval dt is wrs dt.
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Derivation of the master equation

Transition probabilities
Markov property

In general, wrs can depend on the history of the system, i.e.
wrs can depend on how long the system has been in state r ,
which state it came from before that, etc.

In a Markov process, wrs does not depend on the history.

We additionally limit ourselves to homogeneous Markov
processes in which wrs does not depend on t.
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Derivation of the master equation

Derivation of the master equation
The master equation gives us the time evolution of the
probabilities Ps(t).

The probability of being in state s at time t + dt can be
written as follows:

Ps(t + dt) = Ps(t) +
∑
r 6=s

wrsPr (t) dt −
∑
r 6=s

wsrPs(t) dt

The first term is the probability that the system was already in
state s at time t.
The terms in the first sum represent the probability that the
system was in state r at time t (Pr (t)) and jumped into state
s during the interval dt (wrs dt).
The sum includes all states from which the system could have
come.
The final sum does the same thing as above but for jumps out
of state s.
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Derivation of the master equation

Derivation of the master equation
(continued)

Ps(t + dt) = Ps(t) +
∑
r 6=s

wrsPr (t) dt −
∑
r 6=s

wsrPs(t) dt

Rearrange:

Ps(t + dt)− Ps(t)

dt
=
∑
r 6=s

wrsPr (t)−
∑
r 6=s

wsrPs(t)

In the limit as dt → 0, the left-hand side becomes a derivative:

dPs

dt
=
∑
r 6=s

wrsPr −
∑
r 6=s

wsrPs

This is the master equation.
(The argument (t) was dropped because all terms are now
evaluated at time t.)
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Derivation of the master equation

Alternative interpretation

If we have a gas containing a large number of molecules, Ps

might represent the probability that a randomly selected
molecule is in quantum state s.

For a large number of molecules, we should have
Ns = NtotalPs .

Thus, the master equation could also be written

dNs

dt
=
∑
r 6=s

wrsNr −
∑
r 6=s

wsrNs
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The master equation and the equilibrium distribution

We rewrite the master equation slightly:

dPs

dt
=
∑
r 6=s

(wrsPr − wsrPs)

At equilibrium, dPs/dt = 0. Thus∑
r 6=s

(
wrsP

(eq)
r − wsrP

(eq)
s

)
= 0 ∀s

One solution of this system of equations satisfies detailed
balance, i.e. each pair of terms appearing therein individually
equals zero:

wrsP
(eq)
r − wsrP

(eq)
s = 0
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The master equation and the equilibrium distribution

The master equation and the equilibrium distribution
(continued)

The detailed balance condition can be rewritten

P
(eq)
r

P
(eq)
s

=
wsr

wrs

At equilibrium, the probabilities should obey a Boltzmann
distribution, so

wsr

wrs
= exp

(
−εr − εs

kBT

)
where r and s label individual quantum states of the system.

Alternatively, if we want r and s to label energy levels, we
would have

wsr

wrs
=

gr
gs

exp

(
−εr − εs

kBT

)
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The master equation and the equilibrium distribution
Comments

wsr

wrs
=

gr
gs

exp

(
−εr − εs

kBT

)
This equation only fixes the ratio of the transition rates.

The actual values of the transition rates will depend on a
number of factors, including the concentrations of collision
partners.
Many different functional forms for the transition rates are
compatible with this ratio.

Because the transition rates decrease exponentially with
increasing energy difference, it is often a good approximation
to only consider transitions between adjacent energy levels
(Landau-Teller approximation).
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The master equation and the equilibrium distribution
Comments

wsr

wrs
=

gr
gs

exp

(
−εr − εs

kBT

)

If εr > εs , the Boltzmann factor is smaller than 1.
If additionally gr = gs , then wsr < wrs , i.e. ‘downward’
transitions will be more frequent than upward transitions.

This rate difference shrinks as the gap between energy levels
decreases.
High vibrational states usually have small energy level
differences, so once a molecule has gained sufficient
vibrational energy, there is less of a bias towards returning to
lower energies.
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The master equation and the equilibrium distribution

Example: A two-level system

For a two-level system, the master equation is

dP1

dt
= w21P2 − w12P1

dP2

dt
= w12P1 − w21P2

Note that
dP1

dt
+

dP2

dt
=

d

dt
(P1 + P2) = 0

so that P1 + P2 is a constant, which must be P1 + P2 = 1.
Thus

dP1

dt
= w21(1− P1)− w12P1
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The master equation and the equilibrium distribution

Example: A two-level system
(continued)

dP1

dt
= w21(1− P1)− w12P1

dP1

w21 − P1(w21 + w12)
= dt

∴
∫ P1(t)

P1(0)

dP1

w21 − P1(w21 + w12)
=

∫ t

0
dt ′ = t

∴ t = − 1

w21 + w12
ln [w21 − P1(w21 + w12)]

P1(t)
P1(0)

∴ −t(w21 + w12) = ln

(
w21 − P1(t) (w21 + w12)

w21 − P1(0) (w21 + w12)

)
∴ P1(t) =

w21

w21 + w12

(
1− e−t(w21+w12)

)
+ P1(0) e−t(w21+w12)
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The master equation and the equilibrium distribution

Example: A two-level system
(continued)

A slight rewrite of the solution gives

P1(t) =
1− e−t(w21+w12)

1 + w12/w21
+ P1(0) e−t(w21+w12)

Now using the Boltzmann detailed balance condition and
setting the ground-state energy to zero, we get

P1(t) =
1− e−t(w21+w12)

1 + g2
g1

exp
(
− E2

kBT

) + P1(0) e−t(w21+w12)

=
g1
(
1− e−t(w21+w12)

)
g1 + g2 exp

(
− E2

kBT

) + P1(0) e−t(w21+w12)

=
g1
Q

(
1− e−t(w21+w12)

)
+ P1(0) e−t(w21+w12)
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The master equation and the equilibrium distribution

Example: A two-level system
(continued)

P1(t) =
g1
Q

(
1− e−t(w21+w12)

)
+ P1(0) e−t(w21+w12)

Limits:

As t → 0

As t →∞

Relaxation time:
(Time required for distance to equilibrium to
decrease by a factor of 1/e)
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Solving the master equation in general

dPs

dt
=
∑
r 6=s

wrsPr −
∑
r 6=s

wsrPs

The master equation is a set of linear differential equation in
the Pi ’s, so for systems with a finite number of states, it is in
principle always solvable.

In practice, it’s not so simple because of the large number of
variables.
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Solving the master equation

Solving the master equation in general
(continued)

dPs

dt
=
∑
r 6=s

wrsPr −
∑
r 6=s

wsrPs

The solution requires the calculation of the eigenvalues and
eigenvectors of the matrix of coefficients

W =


−w11 w21 . . . wn1

w12 −w22 . . . wn2
...

...
. . .

...
w1n w2n . . . −wnn


where wii =

∑
j 6=i wij .
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Solving the master equation

Solving the master equation in general
(continued)

Solution expressible as a sum of terms involving eλi t , where
the λi ’s are the eigenvalues

For the master equation, λi < 0 ∀i .
Solving large eigenvalue problems can be difficult.

There are usually large gaps in the eigenvalue spectrum such
that we get a good approximation to the long-term behavior
by keeping only a few of the terms (those with the smallest λi
values).
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Solving the master equation

Solving the master equation in general
(continued)

Alternatives:

Direct numerical solution of master equation

Because of the wide range of eigenvalues and potentially large
number of variables, these problems can be hard to solve
numerically.

Simulation of the underlying random process

Easier to implement, but because we need to run lots of
realizations (independent simulations) to get statistics, this
can still take a long time.
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Cumulative probability distributions

Suppose that we have a probability distribution, say Ps , which
gives the probability that a particular variable has the value s.

The cumulative probability distribution is the probability that
s is less than or equal to some particular value. In other
words, the cumulative distribution is defined by

F (S) = P(s ≤ S) =
∑
s≤S

Ps

The complementary cumulative distribution is the probability
that s is greater than some value. Thus, it is defined by

F̄ (S) = P(s > S) = 1− F (S)



The master equation

Cumulative probability distributions

Cumulative distribution of a continuous variable
If t is a continuous variable, instead of probabilities, we have a
probability density p(t) such that

P(a ≤ t ≤ b) =

∫ b

a
p(t) dt

The cumulative distribution function (cdf) is obtained by
integration:

F (T ) = P(t ≤ T ) =

∫ T

L
p(t) dt

where L is the lower limit of t (often either 0 or −∞).

By the fundamental theorem of calculus, the probability
density can be recovered from the cdf by differentiation:

p(t) =
dF

dT

∣∣∣∣
T=t
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Microcanonical rate theory

A microcanonical master equation treatment of reaction
from a set of privileged (transition) states

We’re going to calculate the RRK rate constant k2K , which
involves intramolecular vibrational relaxation leading to
reaction once a molecule accumulates sufficient energy in the
reactive mode.

During IVR, a molecule wanders among a set of equal-energy
states.

Given that the states are of equal energy, we have

wsr

wrs
= exp

(
−Er − Es

kBT

)
= 1

We can therefore set wsr = wrs = w for all (r , s).
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

A molecule reacts (dissociates or isomerizes) as soon as it hits
a state in which the reactive mode has enough energy.
These reactive states correspond to A‡ in RRK theory.

Accordingly, the system cannot return from one of the
reactive states.
(Certainly true for dissociations, less clear for isomerizations)

Mathematically, the reactive states are absorbing states.

The average time required to reach a reactive state is the
inverse of the rate constant.
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A microcanonical master equation treatment. . .
(continued)

Let N be the set of non-reactive states, and R be the set of
reactive states.

If, as in RRK theory, the energy E consists of j quanta shared
over s oscillators, the degeneracy of this energy level is

G ∗ =
(j + s − 1)!

j!(s − 1)!

Again as in RRK theory, if we need at least m quanta in the
reactive mode in order to react, the degeneracy of the set of
reactive states is

G ‡ =
(j −m + s − 1)!

(j −m)!(s − 1)!

The non-reactive set has size GN = G ∗ − G ‡.
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A microcanonical master equation treatment. . .
(continued)

The master equation is

dPn

dt
= w

∑
n′∈N

(Pn′ − Pn)− G ‡wPn ∀n ∈ N

dPr

dt
= w

∑
n′∈N

Pn′ ∀r ∈ R

The last term in dPn/dt is −
∑

n′∈R wPn′ (G ‡ terms for
transfer from state n to the reactive set).
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

dPn

dt
= w

∑
n′∈N

(Pn′ − Pn)− G ‡wPn
dPr

dt
= w

∑
n′∈N

Pn′

Define PN and PR, the probability that the system is,
respectively, in the non-reactive or reactive set:

PN =
∑
n∈N

Pn PR =
∑
r∈R

Pr

These equations can be rewritten

dPn

dt
= wPN − wGNPn − wG ‡Pn ∀n ∈ N

dPr

dt
= wPN ∀r ∈ R
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

Differentiating the definitions of PN and PR with respect to
time, we get

dPN
dt

=
∑
n∈N

dPn

dt

dPR
dt

=
∑
r∈R

dPr

dt

Therefore
dPN
dt

=
∑
n∈N

wPN −
∑
n∈N

wGNPn −
∑
n∈N

wG ‡Pn

= wGNPN − wGNPN − wG ‡PN = −wG ‡PN
dPR
dt

=
∑
r∈R

wPN = wG ‡PN
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

Assuming that all states of energy E are equally likely, the
probability of obtaining a state in N when the molecule is
first energized is PN (0) = GN /G

∗.
A fraction G ‡/G ∗ of the molecules reacts immediately on
energization.

Taking this into account raises some technical difficulties
because the cumulative distribution of reaction times is then
discontinuous across t = 0.
(It jumps from 0 for t < 0 to G ‡/G ∗ at t = 0.)

It is possible to treat this case properly using the Heaviside
function and its derivative, the Dirac delta function.

To avoid these complications, note that G ‡/G ∗ will normally
be small. Thus, assume that PN (0) = 1.
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

The rate equation for PN subject to this initial condition is
easy to solve:

PN = e−wG
‡t

Since PN + PR = 1, we have

PR = 1− PN = 1− e−wG
‡t
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

What is PR?

It is the probability that, by time t, an energized molecule has
reacted.
In other words, PR is the cumulative probability distribution of
the reaction time.

To get the probability density of the reaction time, we
differentiate PR:

pR(t) = wG ‡e−wG
‡t

This can also be thought of as the distribution of lifetimes of
the energized molecules.
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

Recall (from lecture 3): The average of f (t), denoted 〈f 〉, is
calculated by

〈f 〉 =

∫ ∞
0

f (t)p(t) dt

In this case, the average reaction time, 〈t〉, is

〈t〉 =

∫ ∞
0

tpR(t) dt

= wG ‡
∫ ∞
0

te−wG
‡tdt

= (wG ‡)−1

The rate constant is therefore

k2K = 〈t〉−1 = wG ‡
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Microcanonical rate theory

A microcanonical master equation treatment. . .
(continued)

k2K = wG ‡

This treatment predicts a rate constant proportional to G ‡,
just like the RRK treatment.

No dependence on G ∗

Our new expression predicts something very different from
RRK: It says that the rate constant depends on how fast IVR
takes place, but not on how fast the molecule moves through
the transition state.

This is one way to rationalize extremely large rate constants
for gas-phase unimolecular reactions.
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