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Breaking down a reaction

We can break down an elementary reaction into two steps:
Reaching the transition state, and going through the
transition state into the product valley.

R
 TS→ P

For a high barrier, there will be a Boltzmann distribution of
reactant energies which is only slightly disturbed by the leak
across the top of the barrier.

This implies that we can treat the step R
 TS as being in
equilibrium.

R
K‡
−−⇀↽−− TS

k‡
−→ P

v = k‡[TS] (roughly)
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Strategy

R
K‡
−−⇀↽−− TS

k‡
−→ P

v = k‡[TS]

This is an elementary reaction (R→ P), so its rate ought to
be v = k[R].

We will use the equilibrium condition to eliminate [TS].
This will bring thermodynamic quantities related to the
equilibrium constant into the theory.

We will use a quantum-statistical argument to get a value for
the specific rate of crossing of the barrier k‡.
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Review of some elementary thermodynamics
Free energy

The Gibbs free energy (G ) is defined by

G = H − TS

H: enthalpy (∆H = heat at const. p)
S : entropy (measure of energy dispersal)

The Gibbs free energy change is the maximum non-pV work
available from a system.
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Review of some elementary thermodynamics
Free energy (continued)

For a reaction bB + cC→ dD + eE, the Gibbs free energy
change is

∆rGm = ∆rG
◦
m + RT lnQ

where ∆rG
◦
m is the free energy change under standard

conditions:

∆rG
◦
m = d∆f G

◦(D) + e∆f G
◦(E)− [b∆f G

◦(B) + c∆f G
◦(C)]

The reaction quotient Q is defined as

Q =
adD aeE
abB acC

where ai is the activity of species i .
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Review of some elementary thermodynamics
Activity

The activity also depends on the definition of the standard
conditions:

In the gas phase ai = γipi/p
◦ where p◦ is the standard

pressure (usually 1 bar).
For a solute ai = γici/c

◦ where c◦ is the standard
concentration.
There are several different conventions used for
standard concentrations, the most common
being 1 mol/kg and 1 mol/L.

γi is the activity coefficient (sometimes known as a
fugacity coefficient in the gas phase) of species i ,
a measure of the deviation from ideal behavior.
γi = 1 for an ideal substance.
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Review of some elementary thermodynamics
Equilibrium

At equilibrium, ∆rGm = 0, i.e.

∆rG
◦
m = −RT lnK

where K is the numerical constant such that Q = K at
equilibrium.

This equation can be rewritten

K = exp

(
−∆rG

◦
m

RT

)
.

Note that K is related to ∆rG
◦
m, the standard free energy

change.
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The K ‡ equilibrium
Case 1: First-order elementary reaction

We are treating the “equilibrium”

R
K‡
−−⇀↽−− TS

For this equilibrium,

K ‡ =
aTS

aR
=⇒ aTS = K ‡aR

If we assume ideal behavior or similar activity coefficients for
R and TS, we get

[TS] = K ‡[R]

∴ v = k‡K ‡[R]

∴ k = k‡K ‡
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Side note about concentrations, pressures and notation

The equations look a bit neater if we write [X] than pX.

If we write [X], it looks more “normal” to see a standard
concentration c◦.

All of the equations below are valid in either solution or gas
phase by just replacing [X] by pX and c◦ by p◦.
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The K ‡ equilibrium
Case 2: Second-order elementary reaction

The equilibrium is

X + Y
K‡
−−⇀↽−− TS

Now,

K ‡ =
aTS

aX aY
=⇒ aTS = K ‡aX aY

Since ai = γici/c
◦, this becomes

[TS] =
K ‡

c◦
γXγY

γTS
[X][Y]

Assuming ideal behavior, we get

[TS] =
K ‡

c◦
[X][Y]

which gives

k =
k‡K ‡

c◦
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The K ‡ equilibrium
First- vs second-order rate constants

Since the difference between the first- and second-order cases
is just a factor of c◦, we treat the second-order case from here
on.
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Mathematical interlude: Taylor series

For any “nice” function,

f (x) ≈ f (a)+f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+. . .+

f (n)(a)

n!
(x−a)n

For small x , take a = 0:

f (x) ≈ f (0) + f ′(0)x +
1

2
f ′′(0)x2 + . . .

In practice we often stop at the first non-trivial term (i.e. the
first term after f (0) that isn’t identically zero).
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Reminder: units of frequency

In our treatment of vibration, we have so far used the angular
frequency ω, whose units can be thought of as rad s−1.

We can also express frequencies in Hz, i.e. cycles per second,
typically denoted ν.

Since ω = 2πν and ~ = h/2π, ~ω = hν.
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Statistical thermodynamic considerations
From statistical thermodynamics, and neglecting non-ideal
effects, we have

K ‡ =
qTS

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
=

c◦[TS]

[X][Y]
,

where qTS is the volumic partition function of the transition
state and ε‡ is the difference in energy between the reactants
and transition state, measured from the bottom of the
reactant well to the top of the barrier.

∴ [TS] =
[X][Y]

c◦
qTS

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
Writing X + Y 
 TS→ P involves an implicit assumption,
namely that all transition states decay to product.
A complex that has reached the top of the activation barrier
has no intrinsic bias toward reactants or products. Thus, half
of those complexes will, all other things being equal, proceed
to products.
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Statistical thermodynamic considerations
(continued)

Define the concentration of transition states leading to
product formation as

[TS→P] =
1

2
[TS] =

1

2

[X][Y]

c◦
qTS

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
The reaction rate is therefore correctly cast as

v = k‡[TS→P] =
1

2
k‡

[X][Y]

c◦
qTS

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
which gives

k =
1

2

k‡

c◦
qTS

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
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Statistical thermodynamic considerations
(continued)

We assume that the transition-state partition function factors,
i.e. that motion along the reactive normal mode is
independent of other molecular motions:

qTS = q‡qr

where qr is the part of the partition function associated with
the reactive normal mode (i.e. the motion through the saddle)
while q‡ is the rest of the (volumic) partition function.
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Statistical thermodynamic considerations
(continued)

Assume we can treat the reactive mode as a vibration, with
partition function

qr = [1− exp(−hνr/kBT )]−1

Since the reactive mode is “loose”, assume hνr/kBT is small.

Taylor expansion for small x :

1− e−x ≈ x

∴
(
1− e−x

)−1 ≈ x−1

∴ qr ≈
kBT

hνr
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Statistical thermodynamic considerations
(continued)

The rate constant becomes

k =
1

2

k‡

c◦
kBT

hνr

q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
νr represents the frequency for a full “vibrational” cycle of the
reactive mode (back and forth).

k‡ is the frequency for crossing the saddle in one direction
only.

∴ k‡ = 2νr

∴ k =
kBT

c◦h

q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
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Statistical formula for the rate constant
Interpretation

k =
kBT

c◦h

q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)

q‡ is the partition function for the transition state omitting
the reactive mode.
q‡

qX qY

(
N
V

)
exp

(
−∆ε‡

kBT

)
is of the form of an equilibrium

constant with one mode (the reactive mode) removed.
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Statistical formula for the rate constant
Application

k =
kBT

c◦h

q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
In principle, we can use this equation to compute rate constants.
We need

The geometry of the transition state

The height of the barrier and zero-point energies of the
reactants and transition state

The vibrational spectrum of the transition state
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Thermodynamic interpretation

k =
kBT

c◦h

q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)

Define

K ‡ =
q‡

qX qY

(
N

V

)
exp

(
− ∆ε‡

kBT

)
Note that this isn’t quite a normal equilibrium constant
because we have removed one mode from the transition state
partition function.

We can still write

K ‡ = exp

(
−∆‡G ◦m

RT

)



Transition-state theory

Thermodynamic interpretation
(continued)

k =
kBT

c◦h
exp

(
−∆‡G ◦m

RT

)
∴ k =

kBT

c◦h
exp

(
∆‡S◦m
R

)
exp

(
−∆‡H◦m

RT

)
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Relationship to Arrhenius parameters

From ln k = lnA− Ea/RT , we have

d ln k

dT
= Ea/RT

2

or

Ea = RT 2 d ln k

dT
.
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Relationship to Arrhenius parameters
(continued)

For the transition-state theory expression,

ln k = ln

(
kBT

c◦h

)
+

∆‡S◦m
R
− ∆‡H◦m

RT

∂ ln k

∂T

∣∣∣∣
p

=
1

T
+

1

R

∂∆‡S◦m
∂T

∣∣∣∣
p

− 1

RT

∂∆‡H◦m
∂T

∣∣∣∣
p

+
∆‡H◦m
RT 2
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Relationship to Arrhenius parameters
(continued)

There is some cancellation of terms, and a few further
assumptions based on typical values of thermodynamic
quantities. We eventually get

∂ ln k

∂T

∣∣∣∣
p

=
1

T
+

∆‡H◦m
RT 2

− ∆‡ngas

T

where ∆‡ngas is the dimensionless change in the number of
equivalents of gas on going from the reactants to the
transition state (zero for a unimolecular reaction, −1 for a
bimolecular reaction).
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Relationship to Arrhenius parameters
(continued)

Thus,

Ea = RT 2 d ln k

dT

∴ Ea = ∆‡H◦m + RT
(

1−∆‡ngas

)
If we solve for ∆‡H◦m in terms of Ea, put the result back into
our TST rate constant expression and rearrange, we get

k =
kBT

c◦h
exp

(
∆‡S◦m
R

)
exp(1−∆‡ngas) exp

(
− Ea

RT

)
By comparison to the Arrhenius equation, we get

A =
kBT

c◦h
exp

(
∆‡S◦m
R

)
exp(1−∆‡ngas)
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Eyring plot

Go back to the thermodynamic TST equation:

k =
kBT

c◦h
exp

(
∆‡S◦m
R

)
exp

(
−∆‡H◦m

RT

)
∴ ln

(
kc◦h

kBT

)
=

∆‡S◦m
R
− ∆‡H◦m

RT

Plotting ln(kc◦h/kBT ) vs T−1 should give a straight line of
slope −∆‡H◦m/R and intercept ∆‡S◦m/R.


