
Chemistry 4000/5000/7000 Fall 2021
Assignment 3 solutions

1. If you look over the entire assignment as well as the streamlined procedure for calcu-
lating the Wigner correction, you will realize that you need a relatively small number
of calculations. You might as well use a reasonably sized basis set then. By the same
token, we don’t want to go nuts with a huge basis set. I chose the aug-cc-pVDZ basis
set, a medium-sized basis set that includes diffuse functions. The latter may be im-
portant for the through-space interaction between atoms attached to the two carbon
atoms (e.g. the interaction between the large Cl atom and the opposite H atom at
the transition state). There are no true dispersion forces here, so I used the B3LYP
functional, which tends to be a good general-purpose functional. Because this is a
simple octet-rule molecule, I imposed restricted wavefunctions.

Since I’m going to need partition functions to calculate rate constants, I ran Opt+Freq

jobs for each of the structures right away. In the following, M1 denotes the lowest-
energy conformer, M2 is the secondary minimum, and TS is the relevant transition
state.

ε/hartree ∠F-C-C-Cl/degrees ∠F-C-C/degrees ∠Cl-C-C/degrees C-C length/Å
M1 −638.702 881 180.00 107.77 108.89 1.52
M2 −638.702 091 69.73 110.73 112.31 1.51
TS −638.697 887 121.64 109.14 112.40 1.53

2. We have the energies in the table above. For this and the next question, we also need
the partition functions, which Gaussian helpfully calculated for us:

ε/hartree q̂
M1 −638.702 881 5.337×10−15

M2 −638.702 091 6.143×10−15

TS −638.697 887 3.203×10−15

The first rate constant to calculate is M1→ M2 passing through the TS.

k12 =
kBT

h

q̂‡

q̂M1

e−∆‡ε/kBT

∆‡ε = εTS − εM1

= −638.697 887− (−638.702 881) hartree

= 0.004 994 hartree

≡ (0.004 994 hartree)(4.359 745× 10−18 J)

= 2.177× 10−20 J
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Table 1: Energies along the IRC along with the derivatives calculated by central differ-
ences. Blue entries were obtained by averaging adjacent coordinates. The transition state is
highlighted in red.

∴ k12 =
(1.380 649× 10−23 J K−1)(298.15 K)

6.626 070× 10−34 J Hz−1

3.203× 10−15

5.337× 10−15

× exp

(
−2.177× 10−20 J

(1.380 649× 10−23 J K−1)(298.15 K)

)
= 1.881× 1010 s−1.

3. For the reverse rate constant, we have

k21 =
kBT

h

q̂‡

q̂M2

e−∆‡ε/kBT

∆‡ε = εTS − εM2

= −638.697 887− (−638.702 091) hartree

= 0.004 204 hartree

≡ (0.004 204 hartree)(4.359 745× 10−18 J)

= 1.833× 10−20 J

∴ k21 =
(1.380 649× 10−23 J K−1)(298.15 K)

6.626 070× 10−34 J Hz−1

3.203× 10−15

6.143× 10−15

× exp

(
−1.833× 10−20 J

(1.380 649× 10−23 J K−1)(298.15 K)

)
= 3.773× 1010 s−1.

4. K = k12/k21 = 0.499

5. The results of my IRC scan are shown in figure 1. The calculated energies along the
IRC and their derivatives are shown in table 1.

We need to convert the data to SI units. The reduced mass was taken from the log file
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Figure 1: IRC scan about the M1
 M2 transition state

of the transition-state calculation.

V2 =
(−0.002 945 hartree bohr−2)(4.359 745× 10−18 J hartree−1)

(5.291 772× 10−11 m bohr−1)2

= −4.585 J m−2

V4 =
(−0.004 218 hartree bohr−4)(4.359 745× 10−18 J hartree−1)

(5.291 772× 10−11 m bohr−1)4

= −2.345× 1021 J m−4.

As well,

µr = (3.2953 amu)(1.660 539× 10−27 kg amu−1)

≡ 5.4720× 10−27 kg.

κtunnel = 1− 1

24

(
h

kBT

)2

V2 −
h2

96µrkBT

V4

V2

= 1− 1

24

(
6.626 070× 10−34 J Hz−1

(1.380 649× 10−23 J K−1)(298.15 K)

)2

(−4.585 J m−2)

− (6.626 070× 10−34 J Hz−1)2

96(5.4720× 10−27 kg)(1.380 649× 10−23 J K−1)(298.15 K)

× −2.345× 1021 J m−4

−4.585 J m−2

= 1 + 4.950× 10−27 − 0.1038 = 0.8962

6. Using the computational methods I used, I get a nonsensical result due to the sign
of V4. (κtunnel should be larger than 1.) The relatively small deviation from 1 does
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suggest that tunneling is not particularly important for this system, but a much better
set of calculations would have to be performed in order to verify this.

Bonus: If you think about writing the rate equation for (e.g.) the most stable conformation,
you get

d[M1]

dt
= −k12[M1]− k12[M1] + k21[M2] + k21[M3].

There are two k12 terms, one for going from M1 to M2, and the other for going from
M1 to M3. Defining the lumped variable [M23] = [M2] + [M3], we get

d[M1]

dt
= −2k12[M1] + k21 ([M2] + [M3])

= −k123[M1] + k21[M23],

where k123 = 2k12. Thus, k21 is unchanged, but the rate constant for going from M1
to the secondary minima is doubled.

You can also approach this from the TST formulae, but it’s tricky. Take k12 for
example:

k12 =
kBT

h

q̂‡

q̂M1

e−∆‡ε/kBT .

When we lump together the two secondary minima, the two transition states also have
to be lumped together. Thus, q‡ would double, and k12 would therefore also double.
By a similar argument, k21 remains unchanged since both q‡ and qM2 double.
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