
Chemistry 4000/5000/7000 Fall 2021
Assignment 2 solutions

1. I’m going to do the sodium dimer (Na2) as an illustration. I chose
the aug-cc-pVTZ basis set. It’s the largest basis set for which I can
get answers in reasonable time. It has polarization functions built
in. Moreover, it has diffuse functions, which improves the quality of
calculations when we’re going to look at interactions between distant
atoms (as we will when getting a potential energy curve).

Note: There are many other acceptable answers here. The point is to
pick something reasonable, preferably with diffuse functions.

2. I carried out a geometry optimization with the ωB97X-D density func-
tional, spin-restricted wavefunctions, and the aug-cc-pVTZ basis set.
The optimized bond length was 3.0496 Å, and the energy was −324.5646 hartree.

3. My plot is in figure 1. In order to get a reasonably smooth curve
without computing a ridiculous number of points, I carried out two
scans, one starting at 1.5 Å taking 48 steps of size 1 Å, and the other
starting at 1.6 Å taking 14 steps of 0.2 Å each. I then merged the two
data sets (using a text editor) before plotting them. They could also
have been imported into a spreadsheet and handled there.

4. I set up a frequency calculation with the parameters set as above: aug-
cc-pVTZ basis set, ωB97X-D density functional, restricted spin.

The ideal gas law is pV = NkBT , thus V/N = kBT/p. At the standard
pressure p = p◦, Gaussian’s “volume” is in fact a volume per molecule.
It’s not the volume of any real system, so the “translational partition
function” calculated using this volume has no physical meaning.

We can start with the translational partition function

qtr =
V

h3
(2πmkBT )3/2 =

kBT

p◦h3
(2πmkBT )3/2.

The last equality uses Gaussian’s volume.
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Figure 1: Sodium dimer potential energy curve computed with the ωB97X-D
density functional, spin-restricted wavefunctions, and the aug-cc-pVTZ basis
set.
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The Gaussian output file gives a molar mass of 45.979 54 g mol−1, which
is 7.635 0822 × 10−26 kg. The standard pressure is 105 Pa. This gives,
at 25 ◦C,

qtr =
(1.380 649 × 10−23 J K−1)(298.15 K)

105 Pa

×

(√
2π(7.635 0822 × 10−26 kg)(1.380 649 × 10−23 J K−1)(298.15 K)

6.626 070 × 10−34 J Hz−1

)3

= 1.241 × 108.

Gaussian’s value is slightly smaller due to the slightly larger pressure
used by the program by default.

The ideal-gas law is pV = NkBT , so V = kBT/p represents the volume
of an ideal gas per molecule. This doesn’t in general make much sense
since the partition function depends on the volume truly available to
the molecule.

The rotational partition function is

qrot =
2IkBT

σ~2
.

For a homonuclear diatomic molecule, σ = 2. (The Gaussian output file
agrees. Look for ‘Rotational symmetry number’ in the output file.)
For a diatomic molecule, I = µR2, and for a homonuclear diatomic, µ =
mNa/2 = 22.98977 g mol−1/2 = 11.49489 g mol−1 ≡ 1.90877 × 10−26 kg.
Given a bond length of 3.0496 Å, the moment of inertia works out to

I = (1.90877 × 10−26 kg)(3.0496 × 10−10 m)2

= 1.7752 × 10−45 kg m2.

The value of the rotational partition function is therefore

qrot =
2(1.7752 × 10−45 kg m2)(1.380 649 × 10−23 J K−1)(298.15 K)

2(1.054 572 × 10−34 J s)2

= 657.

Gaussian’s value agrees exactly with this one.
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The vibrational frequency was calculated as 176.2 cm−1. Therefore,

~ω0 = hcν̃0

= (6.626 070 × 10−34 J Hz−1)(2.997 924 58 × 1010 cm s−1)(176.2 cm−1)

= 3.5001 × 10−21 J.

Using the lowest vibrational level as out energy reference, the vibra-
tional partition function is

qvib(v = 0) =

[
1 − exp

(
− ~ω0

kBT

)]−1

=

[
1 − exp

(
− 3.5001 × 10−21 J

(1.380 649 × 10−23 J K−1)(298.15,K)

)]−1

= 1.746.

The wavefunction use the bottom of the potential well as the reference
is corrected by a multiplicative term:

qvib(bot) = qvib(v = 0) exp

(
− ~ω0

2kBT

)
= 1.141.

Gaussian agrees with both versions of the vibrational partition function
I calculated.

Finally, the electronic wavefunction is just the spin multiplicity, which
is 1 for a closed-shell molecule. Again, Gaussian agrees.

5. See textbook pp. 76–77, where the Gaussian-style partition functions
are denote q̂.

6. Table 1 gives all of the relevant data from calculations done with the
ωB97X-D density functional and the aug-cc-pVTZ basis set. Restricted
wavefunctions were used in both cases.

We previously saw the formula

qtr =
kBT

p◦h3
(2πmkBT )3/2.
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Table 1: Calculation results from Gaussian, as well as manual calculations
described in the text.

ε0/hartree qtr qvib qrot qelec

Na2 −324.5646 1.225×107 1.746 657 1
Na −162.2689 4.390×106 2

Applying it to the Na atom (m = 3.817 541 × 10−26 kg), we get

qtr =
(1.380 649 × 10−23 J K−1)(298.15 K)

105 Pa

×

(√
2π(3.817 541 × 10−26 kg)(1.380 649 × 10−23 J K−1)(298.15 K)

6.626 070 × 10−34 J Hz−1

)3

= 4.390 × 106.

For Na2, the overall partition function is

qNa2 = (1.241 × 108)(1.141)(657)(1) = 9.30 × 1010.

For Na, we have

qNa = (4.390 × 106)(2) = 8.780 × 106.

Also,

∆ε0 = 2ε0(Na) − ε0(Na2)

= 2(−162.2689) − (−324.5646) hartree

= 0.0268 hartree ≡ 70.4 kJ mol−1

Using the formula from the previous question, we get

K =
q2

Na

qNa2

e−∆ε0/kBT

=
(8.780 × 106)2

9.30 × 1010
exp

(
−70.4 × 103 J mol−1

(8.314 463 J K−1mol1)(298.15 K)

)
= 3.85 × 10−10.
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