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We start by defining the wavefunction. It depends on three "variables", namely the quantum number n, 
the length of the box L and the position x.
> psi := (n,L,x) -> sqrt(2/L)*sin(n*Pi*x/L);
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The uncertainty principle says that ∆x∆p ≥ (hbar)/2. ∆x and ∆p are calculated from <x>, <x^2>, etc. I’ll 
start by calculating the average x, which is found by evaluating the integral
> Int(psi(1,L,x)*x*psi(1,L,x),x=0..L);

d

⌠

⌡


0

L

2






sin

π x

L

2

x

L
x

> avg_x := value(%);

 := avg_x
L
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Note that I carried out the integration in two steps using the inert "Int" so that you could see the 
integral being evaluated before we actually obtained a value. Normally, you would just use "int" and 
get the answer right away. Also, I inserted the value n=1 into the wavefunction through the argument 
of the Maple function I created.

The answer we get makes perfect sense: The average x is in the middle of the box.

Now let’s calculate <x^2>:
> Int(psi(1,L,x)*x^2*psi(1,L,x),x=0..L);
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> avg_x2 := value(%);



 := avg_x2
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The average of p and of p^2 are a little more complicated to evaluate since p = -i(hbar)d/dx:
> Int(psi(1,L,x)*(-I)*hbar*diff(psi(1,L,x),x),x=0..L);
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Note carefully how I entered this expression in Maple.
> avg_p := value(%);

 := avg_p 0
...another common-sense value.

The operator p^2 = -(hbar)^2 d^2/dx^2, so <p^2> is
> Int(psi(1,L,x)*(-hbar^2)*diff(psi(1,L,x),x$2),x=0..L);
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> avg_p2 := value(%);

 := avg_p2
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Now to calculate the standard deviations:
> Delta_x := sqrt(avg_x2-avg_x^2);

 := Delta_x
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This will simplify if we inform Maple that L is positive.
> assume(L>0);
> Delta_x := simplify(Delta_x);

 := Delta_x
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> Delta_p := sqrt(avg_p2-avg_p^2);

 := Delta_p
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Again, Maple needs to know that hbar is positive to simplify this expression:
> assume(hbar>0);
> Delta_p := simplify(Delta_p);



 := Delta_p
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The uncertainty product is
> Delta_x*Delta_p;
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> evalf(%);

0.5678618088 hbar~
which is bigger than (hbar)/2, as Heisenberg told us it should be.


