Chemistry 2740 Spring 2022 Assignment 1 Solution

1. If the data obey the Michaelis-Menten rate law, then an Eadie-Hofstee plot will be linear. The Eadie-Hofstee data are the following:

$v[3FGlc]^{-1}/min^{-1}$	0.0100	0.0189	0.0342	0.0547	0.0782	0.0987	0.11
$v/\mu \mathrm{mol}\mathrm{L}^{-1}\mathrm{min}^{-1}$	53.6	48.5	43.1	34.6	24.5	15.4	8.4

(You would likely have carried out these calculations in a spreadsheet.)

My Eadie-Hofstee plot is shown in figure 1. The data fit the data reasonably well, with no obvious systematic curvature. I would conclude that these data do obey the Michaelis-Menten rate equation.

2. By linear regression, we find

slope =
$$-K_M = -442 \pm 14 \,\mu \text{mol L}^{-1}$$

∴ $K_M = 442 \pm 14 \,\mu \text{mol L}^{-1}$
intercept = $v_{\text{max}} = 58.0 \pm 0.9 \,\mu \text{mol L}^{-1} \text{min}^{-1}$

(The program I used to fit data returns estimates of the errors in the parameters. Excel can do this too using the linest function, but that's an advanced topic.)

3. The turnover number $(k_{\text{cat}} = k_{-2} \text{ in the Michaelis-Menten mechanism})$ is calculated by

$$k_{\text{cat}} = \frac{v_{\text{max}}}{e_0}$$

= $\frac{58.0 \,\mu \text{mol } \text{L}^{-1} \text{min}^{-1}}{15 \,\mu \text{mol } \text{L}^{-1}}$
= $3.9 \,\text{min}^{-1}$

Figure 1: Eadie-Hofstee plot for the phosphorylation of 3FGlc by EII^{Glc}.