

Chemistry 2740 Spring 2020 Test 2 Solutions

1. (a) The standard temperature is 25 °C, so we use the value of K at that temperature.

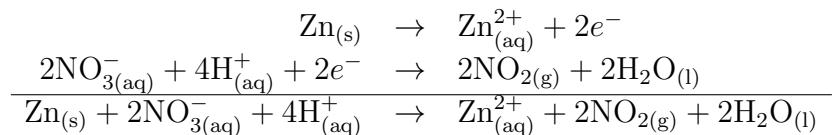
$$\begin{aligned}\Delta_r G^\circ &= -RT \ln K \\ &= -(8.314472 \text{ J K}^{-1}\text{mol}^{-1})(298.15 \text{ K}) \ln(5.80 \times 10^{-10}) \\ &= 52.72 \text{ kJ/mol.}\end{aligned}$$

(b) A plot of $\ln K$ vs T^{-1} will have a slope of $-\Delta_r H^\circ / R$. My graph is shown in Fig. 1. The slope of the line is -1586 K . Therefore,

$$\begin{aligned}\Delta_r H^\circ &= -R(\text{slope}) \\ &= -(8.314472 \text{ J K}^{-1}\text{mol}^{-1})(-1586 \text{ K}) \\ &= 13.19 \text{ kJ/mol.}\end{aligned}$$

(c)

$$K = \frac{(a_{\text{B}(\text{OH})_4^-})(a_{\text{H}^+})}{(a_{\text{B}(\text{OH})_3})(a_{\text{H}_2\text{O}})} \quad (1)$$


Since $[\text{B}(\text{OH})_3] \gg K$, very little of the boric acid will react. Accordingly, we can assume that $a_{\text{B}(\text{OH})_3} \approx 0.013$. Since $K a_{\text{B}(\text{OH})_3} \gg K_w$, water autoionization is negligible. It follows that H^+ and $\text{B}(\text{OH})_4^-$ will be present at equal concentrations. Equation (1) can be written

$$K = \frac{(\gamma_\pm[\text{B}(\text{OH})_4^-])(\gamma_\pm[\text{H}^+])}{(a_{\text{B}(\text{OH})_3})(a_{\text{H}_2\text{O}})}$$

With equal concentrations of H^+ and $\text{B}(\text{OH})_4^-$, the activities of these two ions are therefore the same. Thus we have

$$\begin{aligned}7.89 \times 10^{-10} &= \frac{(a_{\text{H}^+})^2}{(0.013)(1)}. \\ \therefore a_{\text{H}^+} &= \sqrt{(0.013)(7.89 \times 10^{-10})} \\ &= 3.2 \times 10^{-6}. \\ \therefore \text{pH} &= -\log_{10} a_{\text{H}^+} \\ &= -\log_{10}(3.2 \times 10^{-6}) = 5.49.\end{aligned}$$

2. (a)

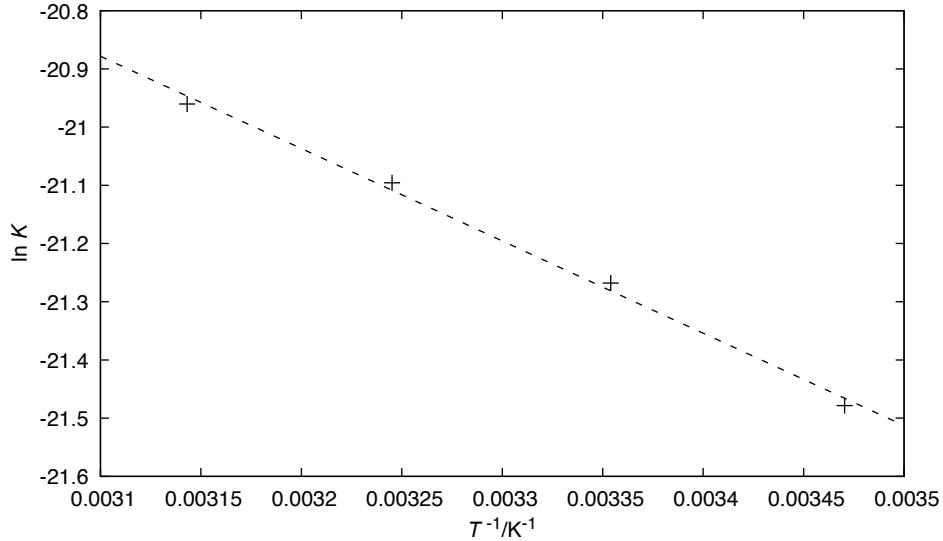


Figure 1: Graph of $\ln K$ vs T^{-1} for the reaction of boric acid with water.

(b)

$$\begin{aligned}
 \Delta_r G^\circ &= \Delta_f G^\circ(\text{Zn}^{2+}) + 2\Delta_f G^\circ(\text{NO}_2) + 2\Delta_f G^\circ(\text{H}_2\text{O}) - 2\Delta_f G^\circ(\text{NO}_3^-) \\
 &= -111.62 + 2(51.32) + 2(-237.140) - 2(-108.74) \text{ kJ/mol} \\
 &= -265.78 \text{ kJ/mol.}
 \end{aligned}$$

From the balancing exercise above, $\nu_e = 2$. Therefore,

$$\begin{aligned}
 E^\circ &= -\frac{\Delta_r G^\circ}{\nu_e F} \\
 &= \frac{265.78 \times 10^3 \text{ J/mol}}{2(96\,485.342 \text{ C/mol})} \\
 &= 1.3773 \text{ V.}
 \end{aligned}$$

We need the activity coefficient of the zinc ion. The ionic strength of the solution at the anode is dominated by the sulfuric acid. Since sulfuric acid is a strong acid, in solution it exists as H^+ and HSO_4^- .

$$\begin{aligned}
 I_c &= \frac{1}{2} [(+1)^2[\text{H}^+] + (-1)^2[\text{HSO}_4^-]] \\
 &= \frac{1}{2} [(+1)^2(0.0032) + (-1)^2(0.0032 \text{ mol/L})] \\
 &= 0.0032 \text{ mol/L.}
 \end{aligned}$$

$$\begin{aligned}
 \therefore \ln \gamma_{\text{Zn}^{2+}} &= -Az_i^2(\varepsilon T)^{-3/2} \sqrt{I_c} \\
 &= -(1.107 \times 10^{-10})(+2)^2 [(6.939 \times 10^{-10} \text{ C}^2 \text{J}^{-1} \text{m}^{-1})(298.15 \text{ K})]^{-3/2} \\
 &\quad \times \sqrt{0.0032 \text{ mol/L}}
 \end{aligned}$$

$$= -0.27.$$

$$\therefore \gamma_{\text{Zn}^{2+}} = e^{-0.27} = 0.77.$$

$$E = E^\circ - \frac{RT}{\nu_e F} \ln \left(\frac{(a_{\text{Zn}^{2+}})(a_{\text{NO}_2})^2}{(a_{\text{NO}_3^-})^2(a_{\text{H}^+})^4} \right)$$

$$= 1.3773 \text{ V} - \frac{(8.314472 \text{ J K}^{-1}\text{mol}^{-1})(298.15 \text{ K})}{2(96485.342 \text{ C/mol})}$$

$$\times \ln \left(\frac{[(0.77)(1.0 \times 10^{-5})](0.24)^2}{[(0.968)(3.539)]^2[(0.968)(3.539)]^4} \right)$$

$$= 1.660 \text{ V.}$$

There is a problem with this solution, which only occurred to me when I was marking the tests: If you do a quick estimate of the pH assuming that only the first proton of sulfuric acid is dissociated, you find that the pH (~ 2.5) is very close to the pK_a of the second proton (2.0). This means that there will be significant dissociation of the second proton. (I'll be honest: I just didn't think of this when I was designing the question.) To really do a good job of this problem, we would have to take that into account. And you would have the problem that you need to do a detailed Debye-Hückel calculation to figure out how much of the HSO_4^- is dissociated. Not super-hard, but time consuming. You could, alternatively, assume that the sulfuric acid is fully dissociated to H^+ and SO_4^- , which turns out to be closer to the truth than assuming that only the first proton is dissociated. If you do that, the calculation runs as follows:

$$I_c = \frac{1}{2} [(+1)^2[\text{H}^+] + (-2)^2[\text{SO}_4^{2-}]]$$

$$= \frac{1}{2} [(+1)^2(0.0064) + (-2)^2(0.0032 \text{ mol/L})]$$

$$= 0.0096 \text{ mol/L.}$$

$$\therefore \ln \gamma_{\text{Zn}^{2+}} = -Az_i^2(\varepsilon T)^{-3/2} \sqrt{I_c}$$

$$= -(1.107 \times 10^{-10})(+2)^2 [(6.939 \times 10^{-10} \text{ C}^2\text{J}^{-1}\text{m}^{-1})(298.15 \text{ K})]^{-3/2}$$

$$\times \sqrt{0.0096 \text{ mol/L}}$$

$$= -0.46.$$

$$\therefore \gamma_{\text{Zn}^{2+}} = e^{-0.46} = 0.63.$$

$$E = E^\circ - \frac{RT}{\nu_e F} \ln \left(\frac{(a_{\text{Zn}^{2+}})(a_{\text{NO}_2})^2}{(a_{\text{NO}_3^-})^2(a_{\text{H}^+})^4} \right)$$

$$= 1.3773 \text{ V} - \frac{(8.314472 \text{ J K}^{-1}\text{mol}^{-1})(298.15 \text{ K})}{2(96485.342 \text{ C/mol})}$$

$$\times \ln \left(\frac{[(0.63)(1.0 \times 10^{-5})](0.24)^2}{[(0.968)(3.539)]^2[(0.968)(3.539)]^4} \right)$$

$$= 1.663 \text{ V.}$$

The correct value is somewhere between these two numbers, but really, the difference is pretty small.