Chemistry 2720 Fall 2005 Quiz 2 Solution

The reaction is

$$
\mathrm{Pb}_{(\mathrm{aq})}^{2+}+\mathrm{CO}_{3(\mathrm{aq})}^{2-} \rightarrow \mathrm{PbCO}_{3(\mathrm{~s})}
$$

For this reaction,

$$
\begin{aligned}
\Delta \bar{H}^{\circ} & =\Delta \bar{H}_{f\left(\mathrm{PbCO}_{3}\right)}^{\circ}-\left(\Delta \bar{H}_{f\left(\mathrm{~Pb}^{2+}\right)}^{\circ}+\Delta \bar{H}_{f\left(\mathrm{CO}_{3}^{2-}\right)}^{\circ}\right) \\
& =-699.1-[0.92+(-675.23)] \mathrm{kJ} / \mathrm{mol}=-24.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The lead (II) ion is clearly the limiting reagent: We have a smaller volume of lead acetate solution, and it's less concentrated. The number of moles of lead (II) ion is

$$
n_{\mathrm{Pb}^{2+}}=(0.200 \mathrm{~L})(0.04 \mathrm{~mol} / \mathrm{L})=0.008 \mathrm{~mol} .
$$

Since lead carbonate is sparingly soluble, we will get almost exactly this number of moles of lead carbonate. The heat generated by the reaction is therefore

$$
q_{\mathrm{rxn}}=(-24.8 \mathrm{~kJ} / \mathrm{mol})(0.008 \mathrm{~mol})=-198 \mathrm{~J}
$$

We have a total of 700 mL of water, so about 700 g . The heat balance is

$$
q=0=q_{\mathrm{rxn}}+q_{\mathrm{H}_{2} \mathrm{O}},
$$

from which we have, finally,

$$
\begin{aligned}
q_{\mathrm{H}_{2} \mathrm{O}} & =m_{\mathrm{H}_{2} \mathrm{O}} \tilde{C}_{P\left(\mathrm{H}_{2} \mathrm{O}\right)} \Delta T=-q_{\mathrm{rxn}} \\
\therefore \Delta T & =\frac{-q_{\mathrm{rxn}}}{m_{\mathrm{H}_{2} \mathrm{O}} \tilde{C}_{P\left(\mathrm{H}_{2} \mathrm{O}\right)}}=\frac{198 \mathrm{~J}}{(700 \mathrm{~g})\left(4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}\right)}=0.07 \mathrm{~K}
\end{aligned}
$$

The temperature increases, but only by $0.07^{\circ} \mathrm{C}$.

