Chemistry 2720 Fall 2005 Quiz 3 Solution

We could adjust the entropies of all the substances in this reaction to 90°, then calculate the entropy change, but it's actually a better idea to use the same technique for this problem as we used for enthalpy changes:

$$
\begin{gathered}
\mathrm{TiO}_{2(\mathrm{~s})}+2 \mathrm{Cl}_{2(\mathrm{~g})}\left(90^{\circ} \mathrm{C}\right) \longrightarrow \mathrm{TiCl}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\left(90^{\circ} \mathrm{C}\right) \\
1 \downarrow \\
\uparrow_{3} \\
\mathrm{TiO}_{2(\mathrm{~s})}+2 \mathrm{Cl}_{2(\mathrm{~g})}\left(25^{\circ} \mathrm{C}\right) \xrightarrow{2} \mathrm{TiCl}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\left(25^{\circ} \mathrm{C}\right)
\end{gathered}
$$

Now calculate the entropy changes for each of the steps:

$$
\begin{aligned}
\Delta \bar{S}_{1} & =\int_{363.15}^{298.15 \mathrm{~K}} \frac{\left(\bar{C}_{P\left(\mathrm{TiO}_{2}\right)}+2 \bar{C}_{P\left(\mathrm{Cl}_{2}\right)}\right) d T}{T}=\left[55.18+2\left(33.91 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right] \ln \frac{298.15 \mathrm{~K}}{363.15 \mathrm{~K}} \\
& =-24.26 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot \\
\Delta \bar{S}_{2} & =\bar{S}_{\mathrm{O}_{2}}^{\circ}+\bar{S}_{\mathrm{TiCl}_{4}}^{\circ}-\left(\bar{S}_{\mathrm{TiO}_{2}}^{\circ}+2 \bar{S}_{\mathrm{Cl}_{2}}^{\circ}\right) \\
& =205.152+353.2-\left[50.62+2\left(223.081 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right]=61.57 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \\
\Delta \bar{S}_{3} & =\int_{298.15 \mathrm{~K}}^{363.15} \frac{\left(\bar{C}_{P\left(\mathrm{TiCl}_{4}\right)}+\bar{C}_{P\left(\mathrm{O}_{2}\right)}\right) d T}{T}=\left(95.4+29.35 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln \frac{363.15 \mathrm{~K}}{298.15 \mathrm{~K}} \\
& =24.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
$$

The overall entropy change is the sum of the entropy changes in processes 1,2 and 3 :

$$
\Delta \bar{S}=\Delta \bar{S}_{1}+\Delta \bar{S}_{2}+\Delta \bar{S}_{3}=-24.26+61.57+24.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=61.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

