Chemistry 2720 Fall 2005 Quiz 6 Solution

1. Since $n=1$ (from the note),

$$
d=\frac{\lambda}{2 \sin \theta}=\frac{2.079 \AA}{2 \sin 75^{\circ}}=1.076 \AA
$$

2.

$$
p=\frac{h}{\lambda}=\frac{6.6260688 \times 10^{-34} \mathrm{~J} / \mathrm{Hz}}{2.079 \times 10^{-10} \mathrm{~m}}=3.187 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s} .
$$

3. According to the uncertainty principle,

$$
\Delta p \geq \frac{h}{4 \pi \Delta x}
$$

In this case, the uncertainty in the position after passing through the slit is 5 nm . (Our best guess about the position would be that the centre of the slit, so a neutron that gets through the slit could be as much as 5 nm away from our guess.) Thus,

$$
\Delta p \geq \frac{6.6260688 \times 10^{-34} \mathrm{~J} / \mathrm{Hz}}{4 \pi\left(5 \times 10^{-9} \mathrm{~m}\right)}=1.055 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

This means that p (calculated in question 2) should sit between $p_{\text {min }}=3.187 \times$ $10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}-1.055 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{s}=3.177 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and $p_{\max }=3.187 \times$ $10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}+1.055 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{s}=3.198 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. Now calculate λ for these two momenta:

$$
\begin{aligned}
\lambda_{\max } & =\frac{h}{p_{\min }}=\frac{6.6260688 \times 10^{-34} \mathrm{~J} / \mathrm{Hz}}{3.177 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}}=2.0859 \AA . \\
\lambda_{\min } & =\frac{h}{p_{\max }}=\frac{6.6260688 \times 10^{-34} \mathrm{~J} / \mathrm{Hz}}{3.198 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}}=2.0721 \AA . \\
\therefore \Delta \lambda & =\frac{1}{2}(2.0859-2.0721 \AA)=0.007 \AA .
\end{aligned}
$$

In case you're curious about the method based on advanced error analysis hinted at in the problem sheet, here it is:

$$
\begin{aligned}
\lambda \pm \Delta \lambda & =\frac{h}{p \pm \Delta p} \\
& =\frac{h}{p} \pm\left|\frac{d}{d p}\left(\frac{h}{p}\right)\right| \Delta p \\
& =\frac{h}{p} \pm \frac{h}{p^{2}} \Delta p \\
\therefore \Delta \lambda & =\frac{h}{p^{2}} \Delta p
\end{aligned}
$$

If you put in the numbers, you of course get the same answer as above. Note that there is no reason why you should have known this.

