Chemistry 2720 Fall 2003 Quiz 5

Name:

\qquad

Suppose that you want to make a compound C by the reaction

$$
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}, \quad \Delta \bar{G}^{\circ}=204 \mathrm{~kJ} / \mathrm{mol}
$$

Your lab also has the supplies necessary for the following reactions:
(A)
$\mathrm{X}+\mathrm{C} \rightarrow \mathrm{P}$,
$\Delta \bar{G}^{\circ}=-509 \mathrm{~kJ} / \mathrm{mol}$.
(B)
$\mathrm{Y}+\mathrm{B} \rightarrow \mathrm{Q}$,
$\Delta \bar{G}^{\circ}=-50 \mathrm{~kJ} / \mathrm{mol}$.
(C)
$\mathrm{W}+\mathrm{Z} \rightarrow 2 \mathrm{~A}$,
$\Delta \bar{G}^{\circ}=-550 \mathrm{~kJ} / \mathrm{mol}$.
(D)
$\mathrm{V}+\mathrm{C} \rightarrow 2 \mathrm{C}$,
$\Delta \bar{G}^{\circ}=-450 \mathrm{~kJ} / \mathrm{mol}$.

1. Provide a brief argument (possibly using a simple calculation) showing that the original reaction (0) will not produce much C under reasonable experimental conditions.
2. Which of the supplementary reactions (A-D) could be used to increase the yield of C relative to what you would get from reaction (0)? Outline your reasoning for each reaction in a few words.
3. Which of the supplementary reactions would, all other things being equal, increase the yield of C the most?

$$
R=8.314472 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

To convert degrees Celsius to Kelvin, add 273.15.

