next up previous
Up: Back to the Chemistry 2720 test index

Chemistry 2720 Fall 2000 Test 2 Solutions

1.
(a)
d corresponds to $\ell=2$, so the possible values of $m_\ell$ are -2,-1,0,1,2. Thus, there are five of these.
(b)
For n=3, $\ell$ can't be any larger than 2. However, f orbitals correspond to $\ell=3$ so there are in fact no 3f orbitals.
2.
There are many examples:
3.

\begin{eqnarray*}p & = & mv = (1.675\times
10^{-27}\,\mathrm{kg})(8000\,\mathrm...
...10^{-23}\,\mathrm{kg\,m/s}}
= 4.945\times 10^{-11}\,\mathrm{m}
\end{eqnarray*}


4.
This is a straightforward application of Bragg's law. Since we get more intensity from the first order of diffraction, this is the one we should go after.

\begin{eqnarray*}% latex2html id marker 28
\sin\theta & = & \frac{n\lambda}{2d} ...
...hrm{pm})}\\
& = & 0.0879\\
\therefore\theta & = & 5.0^\circ
\end{eqnarray*}


5.
(a)
We start from the uncertainty principle

\begin{displaymath}\Delta x\Delta p\ge \frac{h}{4\pi}\end{displaymath}

and note that

E = cp

for massless particles. Therefore

\begin{eqnarray*}% latex2html id marker 39
\Delta E & = & c\Delta p\\
\therefo...
...h}{4\pi}\\
\therefore\Delta x\Delta E & \ge & \frac{hc}{4\pi}
\end{eqnarray*}


(b)
Using the inequality derived above, we have

\begin{eqnarray*}% latex2html id marker 47
\Delta E & \ge & \frac{hc}{4\pi\Delta...
...{-34}\,\mathrm{J/Hz}}\\
& = & 2.39\times 10^{16}\,\mathrm{Hz}
\end{eqnarray*}


This is enormous, considering that optical frequencies are in the range of $10^{14}\,\mathrm{Hz}$.
6.
The ionization energy of a hydrogenic atom is

EI = -E1 = Z2RH.

Our task is to solve this equation for Z. First, we must convert the ionization energy to Joules:

\begin{displaymath}E_I = (24.587\,\mathrm{eV})(1.602\,176\times 10^{-19}\,\mathrm{J/eV})
= 3.9393\times 10^{-18}\,\mathrm{J}\end{displaymath}

Thus we have

\begin{displaymath}Z_\mathrm{eff} = \sqrt{\frac{E_I}{R_H}} = \sqrt{\frac{3.9393\...
...}\,\mathrm{J}}{2.179\,874\times 10^{-18}\,\mathrm{J}}}
= 1.34.\end{displaymath}

This value is less than 2 because the electron which remains after ionization shields the removed electron from the full nuclear charge.
7.
The first line of the Pfund series corresponds to the n=6 to n=5 transition. The energy of this line is

\begin{eqnarray*}\Delta E_{6\rightarrow 5} & = & R_H\left(\frac{1}{5^2}-\frac{1}...
...10^{-18}\,\mathrm{J})\\
& = & 2.66\times 10^{-20}\,\mathrm{J}
\end{eqnarray*}


The frequency is

\begin{displaymath}\nu = \frac{\Delta E_{6\rightarrow 5}}{h} = \frac{2.66\times ...
...mes 10^{-34}\,\mathrm{J/Hz}}
= 4.02\times 10^{13}\,\mathrm{Hz}\end{displaymath}

The corresponding wavelength is

\begin{displaymath}\lambda = \frac{c}{\nu} = \frac{2.997\,925\times 10^8\,\mathrm{m/s}}{4.02\times 10^{13}\,\mathrm{Hz}}
= 7.46\,\mu\mathrm{m}\end{displaymath}

The others are computed analogously. Here are the results:
ni $\lambda (\mu\mathrm{m})$
6 7.46
7 4.65
8 3.74
9 3.30
8.
(a)
We first want to calculate the minimum (kinetic) energy from the particle-in-a-box formula:

\begin{displaymath}E_{K\mathrm{(min)}} = E_1 = \frac{h^2}{8mL^2}\end{displaymath}

We need the mass of a single protein molecule:

\begin{displaymath}m = \frac{28\,\mathrm{kg/mol}}{6.022\,142\times 10^{23}\,\mathrm{mol}^{-1}}
= 4.65\times 10^{-23}\,\mathrm{kg}\end{displaymath}

Thus,

\begin{displaymath}E_{K\mathrm{(min)}} = \frac{(6.626\,069\times 10^{-34}\,\math...
...imes 10^{-3}\,\mathrm{m})^2} = 5.25\times
10^{-40}\,\mathrm{J}\end{displaymath}

We use $E_K = \frac{1}{2}mv^2$ to calculate a minimum speed:

\begin{eqnarray*}v_\mathrm{min} & = & \sqrt{2E_{K\mathrm{(min)}}/m} = \sqrt{2(5....
...{-23}\,\mathrm{kg})}\\
& = & 4.75\times 10^{-9}\,\mathrm{m/s}
\end{eqnarray*}


(b)
The average kinetic energy at room temperature is

\begin{displaymath}\bar{E}_K = \frac{3}{2}RT =
\frac{3}{2}(8.314\,510\,\mathrm{J\,K^{-1}mol^{-1}})(293\,\mathrm{K})
= 3654\,\mathrm{J/mol}\end{displaymath}

On a per molecule basis, this is

\begin{displaymath}\bar{E}_K = \frac{3654\,\mathrm{J/mol}}{6.022\,142\times 10^{23}\,\mathrm{mol}^{-1}}
= 6.07\times 10^{-21}\,\mathrm{J}\end{displaymath}

This is enormously larger than the minimum imposed by quantum mechanics, so quantum effects are of no particular significance in this system.

next up previous
Up: Back to the Chemistry 2720 test index
Marc Roussel
2000-11-18