next up previous
Up: Back to the Chemistry 2720 test index

Chemistry 2720 Fall 2000 Test 1 Solutions

1.
(a)
The mass of water is

\begin{displaymath}m_\mathrm{H_2O} = 0.14(15\,\mathrm{g}) =
2.1\,\mathrm{g}.\end{displaymath}

The heat required to warm the water to $100^\circ\mathrm{C}$ is

\begin{displaymath}q_1 = m_\mathrm{H_2O}\tilde{C}_P\Delta T =
(2.1\,\mathrm{g})...
...\mathrm{J\,K^{-1}g^{-1}})(80\,\mathrm{K})
= 0.70\,\mathrm{kJ}.\end{displaymath}

The heat required to vaporize the water once it reaches the boiling point is

\begin{displaymath}q_2 = m_\mathrm{H_2O}\Delta\tilde{H}_\mathrm{vap} = (2.1\,\mathrm{g})(2257\,\mathrm{J/g})
= 4.74\,\mathrm{kJ}.\end{displaymath}

The total heat required is therefore

\begin{displaymath}q = 0.70+4.74\,\mathrm{kJ} = 5.4\,\mathrm{kJ}.\end{displaymath}

(b)
The process under consideration is

\begin{displaymath}\mathrm{H_2O_{(l)}} \rightarrow\mathrm{H_2O_{(g)}}.\end{displaymath}

The equilibrium constant for this process is $K = a_\mathrm{g}/a_\mathrm{l}
= (P/P^\circ)/X$. For pure water, X=1 so that $K=(P/P^\circ)$. Therefore

\begin{displaymath}\ln\left(\frac{P_1}{P_2}\right) =
\frac{\Delta\bar{H}^\circ}{R}
\left(\frac{1}{T_2}-\frac{1}{T_1}\right).\end{displaymath}

In our case, take $T_1=373.15\,\mathrm{K}$ and $P_1 =
101\,325\,\mathrm{Pa}$. We want to find the boiling temperature corresponding to the pressure $P_2 = 1.5\times
10^5\,\mathrm{Pa}$. The enthalpy of vaporization of water at $100^\circ\mathrm{C}$ is 40.66kJ/mol. Therefore

\begin{eqnarray*}% latex2html id marker 43
\frac{1}{T_2} & = &
\frac{R}{\Delta\...
...erefore T_2 & = & 384.66\,\mathrm{K}\equiv
112^\circ\mathrm{C}
\end{eqnarray*}


(c)
The pressure is constant, so the work done is

\begin{displaymath}w = -P_\mathrm{ext}\Delta V.\end{displaymath}

The initial volume is

\begin{displaymath}V_1 = \frac{20\times 10^{-3}\,\mathrm{L}}{1000\,\mathrm{L/m^3}}
= 2\times 10^{-5}\,\mathrm{m^3}.\end{displaymath}

The final volume is 40 times larger:

\begin{displaymath}V_2 = 40V_1 = 8\times 10^{-4}\,\mathrm{m^3}.\end{displaymath}

The pressure, in Pascals, is

\begin{displaymath}P = (0.9\,\mathrm{bar})(10^5\,\mathrm{Pa/bar}) =
9\times 10^4\,\mathrm{Pa}.\end{displaymath}

The work is therefore

\begin{displaymath}w = -(9\times 10^4\,\mathrm{Pa})(8\times 10^{-4} -
2\times 10^{-5}\,\mathrm{m}^3) = -70\,\mathrm{J}.\end{displaymath}

2.
(a)
The maximum work is $-\Delta\bar{G}$. In this case, the reaction only involves solids, so $\Delta\bar{G}=\Delta\bar{G}^\circ$.

\begin{eqnarray*}% latex2html id marker 85
\Delta\bar{G}^\circ & = &
\Delta\bar...
...imes
10^{-3}\,\mathrm{kg/mol}}\\
& = & -4.15\,\mathrm{MJ/kg}
\end{eqnarray*}


The maximum specific electrical work is therefore 4.15MJ/kg.
(b)
We need to find the limiting reagent:

\begin{eqnarray*}n_\mathrm{Zn} & = & \frac{10\,\mathrm{g}}{65.38\,\mathrm{g/mol}...
...c{15\,\mathrm{g}}{86.936\,\mathrm{g/mol}}
= 0.17\,\mathrm{mol}
\end{eqnarray*}


Since we need two stoichiometric equivalents of MnO2 per stoichiometric equivalent of zinc, the former is clearly limiting. Accordingly, the amount of zinc that reacts is

\begin{displaymath}n_\mathrm{Zn,used} = n_\mathrm{MnO_2}/2 =
0.086\,\mathrm{mol}.\end{displaymath}

The maximum total work is therefore

\begin{displaymath}w'_\mathrm{max} = (271.1\,\mathrm{kJ/mol})(0.086\,\mathrm{mol})
= 23\,\mathrm{kJ}\end{displaymath}

3.
(a)
At equilibrium, $\Delta\bar{G} = 0$ so

\begin{displaymath}\Delta\bar{G}^\circ = -RT\ln K.\end{displaymath}

We therefore need K for the reaction

\begin{displaymath}\mathrm{TlF_{4(s)}} \rightarrow \mathrm{Tl^{4+}} +
4\mathrm{F^-_{(aq)}}\end{displaymath}

The equilibrium activity of Tl4+ is $4.5\times 10^{-4}$. We get four equivalents of fluorine for every thallium ion, so $a_\mathrm{F^-} = 4(4.5\times
10^{-4}) = 1.8\times 10^{-3}$. Thus

\begin{eqnarray*}% latex2html id marker 134
K & = & (a_\mathrm{Tl^{4+}})(a_\math...
...\mathrm{K})\ln(4.7\times10^{-15})\\
& = & 82\,\mathrm{kJ/mol}
\end{eqnarray*}


(b)
The free energy of reaction can be written

\begin{displaymath}\Delta\bar{G}^\circ =
\Delta\bar{G}^\circ_{f\mathrm{(Tl^{4+}...
...irc_{f\mathrm{(F^-)}} - \Delta\bar{G}^\circ_{f\mathrm{(TlF_4)}}\end{displaymath}

Rearranging, we get

\begin{displaymath}\Delta\bar{G}^\circ_{f\mathrm{(TlF_4)}} =
\Delta\bar{G}^\ci...
...+ 4\Delta\bar{G}^\circ_{f\mathrm{(F^-)}} - \Delta\bar{G}^\circ.\end{displaymath}

Accordingly, if we can obtain values for the standard free energies of formation of thallium (IV) ions and of fluoride ions, we can calculate the standard free energy of formation of TlF4.


next up previous
Up: Back to the Chemistry 2720 test index
Marc Roussel
2000-10-19