next up previous
Up: Back to the Chemistry 2720 assignments index

Chemistry 2720 Fall 2000 Assignment 3 Solutions

1.
(a)
If we add the two reactions given, we almost have the required reaction:

\begin{displaymath}\mathrm{C_6H_4(OH)_{2(aq)}} + \mathrm{H_2O_{2(aq)}}
\righta...
..._2O_{(l)}}
+ \mathrm{H_{2(g)}}
+ \frac{1}{2}\mathrm{O_{2(g)}}\end{displaymath}

The last two terms are just water in its elemental form. If we now add in the formation reaction for water

\begin{displaymath}\mathrm{H_{2(g)}} + \frac{1}{2}\mathrm{O_{2(g)}}
\rightarrow...
...2O_{(l)}}\qquad\Delta\bar{H}^\circ =
-285.830\,\mathrm{kJ/mol}\end{displaymath}

we get the desired reaction. The enthalpy change for the reaction of hydroquinone with hydrogen peroxide is therefore

\begin{displaymath}\Delta\bar{H}^\circ = 177 + (-94.6) +
(-285.830)\,\mathrm{kJ/mol} = -203\,\mathrm{kJ/mol}.\end{displaymath}

(b)
The density of water at $20^\circ\mathrm{C}$ is 998g/L. (Given the approximations being used in this problem, the density at $20^\circ\mathrm{C}$ is clearly a sufficiently close approximation to the initial density of the solvent.) The heat required to raise the temperature of a liter of water from 18 to $100^\circ\mathrm{C}$ is therefore approximately

\begin{displaymath}q = (998\,\mathrm{g/L})(4.184\,\mathrm{J\,K^{-1}g^{-1}})(82\,\mathrm{K}) =
342\,\mathrm{kJ/L}.\end{displaymath}

The stoichiometry of the reaction is 1:1 and the reaction generates heat in the amount of 203kJ/mol. Thus, the required concentrations of hydroquinone and of hydrogen peroxide in the compartment in which the reaction occurs are both

\begin{displaymath}c = \frac{342\,\mathrm{kJ/L}}{203\,\mathrm{kJ/mol}} =
1.7\,\mathrm{mol/L}.\end{displaymath}

(c)
The change in the number of equivalents of gas is $\Delta\bar{n}_\mathrm{gas} = 1$. Thus,

\begin{eqnarray*}\Delta\bar{E}^\circ & = & \Delta\bar{H}^\circ -
RT\Delta\bar{n...
...^{-1}})(298.15\,\mathrm{K})(1)\\
& = & 174.5\,\mathrm{kJ/mol}
\end{eqnarray*}


2.
First note that at $500^\circ\mathrm{C}$, the combustion of propane will produce water vapor. The enthalpy change at this temperature is calculated from the following cycle:
\fbox{
\unitlength 1.00mm
\linethickness{0.8pt}
\begin{picture}
(110.00,35.00)(0...
...0){\makebox(0,0)[cc]{3}}
\put(55.00,118.00){\makebox(0,0)[cc]{2}}
\end{picture}}
We calculate the enthalpy changes for each step:

\begin{eqnarray*}% latex2html id marker 117
\Delta\bar{H}^\circ_1
& = & (\bar{C...
...3.3 + 116.7\,\mathrm{kJ/mol}\\
& = & -2031.3\,\mathrm{kJ/mol}
\end{eqnarray*}


3.
For an isothermal process like vaporization the change in entropy is just qrev/T. In this case, we get

\begin{displaymath}\Delta\bar{S} = \frac{84\,\mathrm{J/mol}}{4.22\,\mathrm{K}} =
20\,\mathrm{J\,K^{-1}mol^{-1}}.\end{displaymath}

4.
The entropy change is calculated by

\begin{displaymath}\Delta S = \int\frac{dq_\mathrm{rev}}{T}.\end{displaymath}

For a simple heating process, we have $dq_\mathrm{rev} =
n\bar{C}_P\,dT$ so that

\begin{displaymath}\Delta S = n\bar{C}_P\int_{T_1}^{T_2}\frac{dT}{T} =
n\bar{C}_P\ln\left(\frac{T_2}{T_1}\right).\end{displaymath}

In this case,

\begin{eqnarray*}% latex2html id marker 167
n & = & \frac{50\,\mathrm{g}}{119.00...
...c{326\,\mathrm{K}}{285\,\mathrm{K}}\right)
= 3.0\,\mathrm{J/K}
\end{eqnarray*}



next up previous
Up: Back to the Chemistry 2720 assignments index
Marc Roussel
2000-10-03