next up previous
Up: Back to the Chemistry 2720 assignments index

Chemistry 2720 Fall 2000 Assignment 1 Solutions

Nomenclature

1.
Na2HPO4
2.
XeF4
3.
Fe2O3
4.
Co2+
5.
HCl
6.
N2O5
7.
F2
8.
CaBr2
9.
O2
10.
NH3
11.
I-
12.
NH4NO3
13.
$\mathrm{NiSO}_4\cdot 6\mathrm{H}_2\mathrm{O}$
14.
NaCl
15.
K+
16.
CH4
17.
HNO3

Balancing chemical reactions

1.
$2\mathrm{NaCl} + \mathrm{SO_2} + \mathrm{H_2O} +
\frac{1}{2}\mathrm{O_2} \rightarrow \mathrm{Na_2SO_4} + 2\mathrm{HCl}$
2.
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{OH} + 3\mathrm{O_2}
\rightarrow 2\mathrm{CO_2} + 3\mathrm{H_2O}$

Basic physical chemistry

1.
In SI units, the data are as follows: $V=75\,\mathrm{m^3}$, $P = 90\,000\,\mathrm{Pa}$ and $T = 298\,\mathrm{K}$. The number of moles is therefore

\begin{displaymath}n = \frac{PV}{RT} = \frac{(90\,000\,\mathrm{Pa})(75\,\mathrm{...
...m{J\,K^{-1}mol^{-1}})(293\,\mathrm{K})}
= 2.77\,\mathrm{kmol}.\end{displaymath}

2.
$q = m\tilde{C}_P\Delta T =
(200\,\mathrm{g})(4.184\,\mathrm{J\,K^{-1}g^{-1}})(16\,\mathrm{K})
= 13\,\mathrm{kJ}$
3.
$q = m\Delta\tilde{H}^\circ_{(\mathrm{condense},100^\circ\mathrm{C})}
= (400\,\mathrm{g})(-2257\,\mathrm{J/g}) =
-903\,\mathrm{kJ}$
4.

\begin{eqnarray*}\Delta\bar{H}^\circ & = & \Delta\bar{H}^\circ_{f(\mathrm{BF_3})...
...}(0)\right)\,\mathrm{kJ/mol}\\
& = &
-732.2\,\mathrm{kJ/mol}
\end{eqnarray*}


5.

\begin{displaymath}K = \frac{[\mathrm{C}]}{[\mathrm{A}][\mathrm{B}]}\end{displaymath}

6.
You first have to look up the acid dissociation constant of acetic acid. The values vary somewhat from table to table. I got mine from Kotz and Treichel, Chemistry & Chemical Reactivity, 3rd ed., p 808. According to this source, $K_a =
1.8\times 10^{-5}$. This is the equilibrium constant for the reaction

\begin{displaymath}\mathrm{CH_3COOH_{(aq)}} \rightarrow \mathrm{CH_3COO^-_{(aq)}}
+ \mathrm{H^+_{(aq)}}.\end{displaymath}

Thus

\begin{displaymath}K_a = \frac{[\mathrm{CH_3COO^-_{(aq)}}][\mathrm{H^+_{(aq)}}]}{[\mathrm{CH_3COOH_{(aq)}}]}.\end{displaymath}

There are two ways to proceed:
(a)
We have a total of $0.01\,\mathrm{mol/L}$ of acetic acid. After dissociation, this means that

\begin{displaymath}[\mathrm{CH_3COO^-_{(aq)}}]+ [\mathrm{CH_3COOH_{(aq)}}]
= 0.01\,\mathrm{mol/L}.\end{displaymath}

Moreover, one proton is produced for each acetate ion. We can neglect the water equilibrium since the acid concentration is significant and the Ka relatively large. Accordingly, $[\mathrm{CH_3COO^-_{(aq)}}] \approx
[\mathrm{H^+_{(aq)}}]$. Combining these equations, we obtain a quadratic equation. Working through this procedure, I find $[\mathrm{H^+_{(aq)}}] = 4.15\times
10^{-4}$. I'm not showing the detailed work because there is a simpler way which you should use whenever possible.
(b)
The Ka is not particularly large. It follows that a relatively small amount of acid will dissociate so that $[\mathrm{CH_3COOH_{(aq)}}] \approx 0.01\,\mathrm{mol/L}$. The validity of this approximation can be verified at the end of the calculation. It is still true that $[\mathrm{CH_3COO^-_{(aq)}}] \approx
[\mathrm{H^+_{(aq)}}]$. The Ka equation becomes

\begin{eqnarray*}% latex2html id marker 122
1.8\times 10^{-5} & \approx &
\frac...
...therefore [\mathrm{H^+_{(aq)}}] & \approx & 4.24\times 10^{-4}.
\end{eqnarray*}


Note that the answer justifies our approximations. It is quite a bit smaller than the total amount of acetic acid and quite a bit larger than the proton concentration which might be obtained due to the dissociation of water. The difference between the answers obtained by the two methods is negligible on the logarithmic pH scale.
The pH is therefore 3.4.

Note that I didn't carry around units in these calculations. There is a reason for this which we will study later in this course.

7.
(a)
no
(b)
yes
(c)
no
(d)
yes
(e)
yes
8.
(a)
no
(b)
yes
(c)
no
(d)
yes
(e)
no

Mathematics

1.
$\displaystyle\frac{df}{dx} = 15x^4 + 2$
2.
(a)
$\displaystyle\int f(x)\,dx = \frac{3}{6}x^6 +
\frac{2}{2}x^2 + x = \frac{1}{2}x^6 + x^2 + x$
(b)
$\displaystyle\int_{x_i}^{x_f}\frac{dx}{x}
= \left.\ln x\right\vert _{x_i}^{x_f}
= \ln x_f - \ln x_i = \ln\left(\frac{x_f}{x_i}\right)$
(c)

\begin{eqnarray*}\displaystyle\int_1^2\frac{3x^2+8x+1}{2x}\,dx
& = & \int_1^2 d...
...\
& = & \left(\frac{25}{4} + \frac{1}{2}\ln 2\right) = 6.5966
\end{eqnarray*}



next up previous
Up: Back to the Chemistry 2720 assignments index
Marc Roussel
2000-09-19