NAME:		
Student nur	nber:	_

Chemistry 2000 Spring 2019 Test 1 Version B

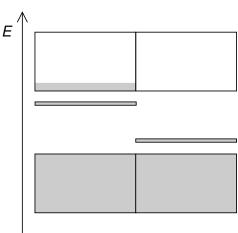
Time: 90 minutes

Aids permitted: none. See page 10 for useful data.

Overflow/scratch space: If you need the extra space at the end of this paper to continue an answer, it is your responsibility to make it clear what I need to mark, i.e. what is your answer vs what is just scratch work.

Confidentiality Agreement: I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:30 p.m. Mountain Time on February 14th, 2019. I understand that breaking this agreement would constitute academic misconduct, and would result in significant academic sanction.

Date:	
Date:	


Question	Mark
1	/5
2	/9
3	/2
4	/5
5	/10
6	/18
7	/5
Total:	/54
Percentage:	%

1. The following is an incomplete Lewis diagram of ethenol:

/5

- (a) Add any missing lone pairs directly on the diagram. [1 mark]
- (b) According to valence-bond theory, the hybridization of carbon ${\bf 1}$ is _____ while the hybridization of the oxygen atom is ____ [2 marks]
- (c) According to valence-bond theory, the hydrogen-oxygen sigma bond is made by overlapping an oxygen _____ orbital with a hydrogen ____ orbital. [2 marks]

2. The following is a band diagram for a diode:

- (a) On the diagram, label the p-type semiconductor, n-type semiconductor, valence band, conduction band, donor band, and acceptor band. Show the directions in which electrons and holes flow most easily given an appropriately configured external circuit. [5 marks]
- (b) In the case of a light-emitting diode, electrons are supplied to the ____ side of the junction. Light is emitted when the electrons go from the ____ band to the ____ band at ____ .

 [4 marks]

NAME:

3. The breakdown of chlorofluorocarbons in the stratosphere eventually results in the production of HCl. Is HCl a greenhouse gas? Explain briefly. [2 marks]

4. Build a valence MO diagram for HeH. Populate your MO diagram with electrons. Use your diagram to explain whether you think such a molecule could exist. [5 marks]

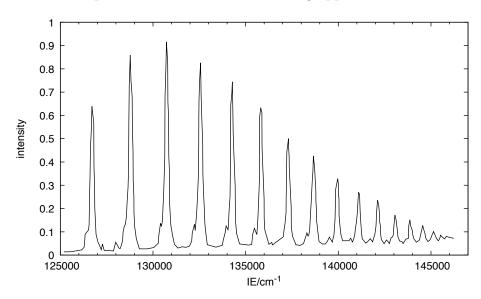
NAME:____

/10

5. Build a valence MO diagram for N_2 . Populate your MO diagram with electrons. What features of the MO treatment do and do not agree with the Lewis diagram? (You may need to do additional work using the MO diagram to answer this question, and of course you will need a Lewis diagram as well.) [10 marks]

NAME:	
-------	--

/18


6. (a) Draw an **octet rule** Lewis diagram for SO₂. If your Lewis diagram has resonance structures, draw those too. [3 marks]

(b) Draw a π MO diagram for SO₂. Fill in the MO diagram with the appropriate number of electrons. Identify the HOMO and LUMO. [6 marks]

(c) Sketch each of the π MOs. Show both top and side views of each orbital. [6 marks]

(d) You may recall that SO_2 is a Lewis acid. What does your MO analysis tell you about where (i.e. at which atom) a Lewis base would react with SO_2 ? Explain briefly. [3 marks]

7. The photoelectron spectrum of H_2 has the following appearance:¹

(IE = ionization energy)

Given that the vibrational frequency of H_2 is $4401.21 \,\mathrm{cm}^{-1}$, what information can you infer from this spectrum? Does this agree with our discussion of the molecular-orbital theory of H_2 ? Be specific. For full credit, you will need to read some data from the spectrum. [5 marks]

Notes: This spectrum was digitized from real experimental data, so it's a bit noisy. Ignore the little side-peaks and focus on the large peaks. (If you're really curious, I can explain where those little side peaks come from after the test.) The peaks in the photoelectron spectrum get closer together as we go up in energy for reasons that we did not discuss directly in class. Focus on the lower-energy peaks for your analysis.

¹Adapted from L. Åsbrink, Chem. Phys. Lett. 7, 549 (1970).

NAME:		
_		

OVERFLOW SPACE

NAME:	

OVERFLOW SPACE

Potentially useful formula

$$E = h\nu = \frac{hc}{\lambda} = hc\tilde{\nu}$$

Periodic table

1																																18
1 H]																															2 He
1.01	2																					1	3	1	4	1	5	1	6	1'	7	4.00
3 Li	4 B	9																				5	В	6	С	7	N	8	0	9	F	10 Ne
6.94	9.01																					10	.81	12.	.01	14	.01	16	.00	19.	00	20.18
11 Na	12 M ₂	5																				13	Al	14	Si	15	Р	16	S	17	Cl	18 Ar
22.99	24.31		3		4		5	•	3	7	7	8	3	9)	1	.0	1	1	12	2	26	.98	28	.09	30	.97	32	.07	35.	45	39.95
19 K	20 C	ı 21	Sc	22	Ti	23	V	24	Cr	25	$_{\rm Mn}$	26	Fe	27	Со	28	Ni	29	Cu	30	$_{ m Zn}$	31	$_{\mathrm{Ga}}$	32	$_{\mathrm{Ge}}$	33	$_{\mathrm{As}}$	34	Se	35	$_{\mathrm{Br}}$	36 Kr
39.10	40.08	4	1.96	47	.88	50	.94	52.	00	54.	94	55.	85	58.	93	58	.69	63.	.55	65.4	11	69	.72	72.	.61	74	.92	78	.96	79.	90	83.80
37 Rb	38 S	39	Y	40	Zr	41	Nb	42	$_{\mathrm{Mo}}$	43	$_{\mathrm{Tc}}$	44	Ru	45	Rh	46	$_{\mathrm{Pd}}$	47	Ag	48 ($\mathbb{C}\mathbf{d}$	49	$_{\rm In}$	50	Sn	51	$_{\mathrm{Sb}}$	52	Te	53	I	54 Xe
85.47	87.62	88	3.91	91	.22	92	.91	95.	94			101	.07	102	.91	106	3.42	107	.87	112.	41	114	1.82	118	3.71	121	.76	127	.60	126	.90	131.29
55 Cs	56 B	ι 57	La	72	Hf	73	Ta	74	W	75	Re	76	$_{\mathrm{Os}}$	77	Ir	78	Pt	79	Au	80	Hg	81	Τl	82	Pb	83	Bi	84	Ро	85	At	86 Rn
132.91	137.3	13	8.91	178	8.49	180	0.95	183	.85	186	.21	190	0.2	192	.22	195	5.08	196	6.97	200.	59	204	1.38	20'	7.2	208	.98					
87 Fr	88 R	ı 89	Ac	104	Rf	105	Db	106	Sg	107	$_{\mathrm{Bh}}$	108	$_{\mathrm{Hs}}$	109	$_{ m Mt}$	110	$_{\mathrm{Ds}}$	111	Rg													
				58	Ce	59	Pr	60	Nd	61	Рm	62	Sm	63	Eu	64	Gd	65	$^{\mathrm{Tb}}$	66 1	Эу	67	Но	68	$_{\rm Er}$	69	$_{\mathrm{Tm}}$	70	Yb	71	Lu	
				1.40	10	1.47	0.01	144	0.4			150	20	151	07	1	7.05	150		1.00	-0	104		1.05	. 0.0	100		1.770		174	07	
							7.91 Pa	144		0.2	NI	150		151 95			7.25										3.93		-	174		
										93	ир	94	Pu	95	Am	90	Cm	97	BK	98	Cī	99	ES	100	rт	101	Md	102	INO	103	Lr	
				232	2.04	23.	1.04	238	.03																							

Valence atomic orbital energies

Atom	Orbital	ε/Ry
Н	1s	-1.00
Не	1s	-1.81
O	2s	-2.38
	2p	-1.17
S	3s	-1.54
	3p	-0.86