Chemistry 2000 Spring 2006 Test 1 Solutions

Marginal notes indicate problems assigned during the term which draw on similar themes.

1. (a) $[S_2O_8^{2-}]$ doubles from experiment 1 to experiment 2 while $[I^-]$ is held *Chapter 15 #11* constant, causing the rate to double. The reaction is therefore firstorder with respect to $[S_2O_8^{2-}]$. In experiments 2 and 3, $[S_2O_8^{2-}]$ is held constant while [I⁻] is doubled, causing a doubling of the rate. The reaction is therefore also first-order with respect to $[I^-]$. The rate law is

- $v = k[S_2O_8^{2-}][I^-].$
- (b) We can use the data from any of the experiments. From experiment 1, we have

$$k = \frac{v}{[S_2O_8^{2-}][I^-]}$$

$$= \frac{1.4 \times 10^{-5} \,\text{mol L}^{-1} \text{s}^{-1}}{(0.038 \,\text{mol/L})(0.060 \,\text{mol/L})}$$

$$= 6.1 \times 10^{-3} \,\text{L mol}^{-1} \text{s}^{-1}.$$

i. For an elementary reaction, the rate law would agree with the Chapter 15 #47 (c) molecularity. In this case, we would have a third-order reaction with respect to $[I^-]$. Since the order with respect to $[I^-]$ is first, this reaction cannot be elementary.

and additional problems onelementary

ii. There are really too many reactants for it to be likely that this reaction is elementary.

reactions Chapter 15 #25 and 43

VS

complex

2. (a)

$$k = Ae^{-E_a/(RT)}$$

$$= (5.4 \times 10^{16} \,\mathrm{s}^{-1}) \exp\left(\frac{-114700 \,\mathrm{J/mol}}{(8.314472 \,\mathrm{J K^{-1} mol}^{-1})(293.15 \,\mathrm{K})}\right)$$

$$= 2.0 \times 10^{-4} \,\mathrm{s}^{-1}.$$

$$\therefore t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{2.0 \times 10^{-4} \,\mathrm{s}^{-1}} = 3.5 \times 10^3 \,\mathrm{s}.$$

(b) The reaction is

$$PAN \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} radical + NO_2.$$

relationship between kinetics and equilibrium

At equilibrium, the rates of the forward and reverse reactions are equal:

$$k_1[PAN] = k_{-1}[radical][NO_2].$$

$$\therefore K = \frac{[radical][NO_2]}{[PAN]} = \frac{k_1}{k_{-1}}$$

$$= \frac{2.0 \times 10^{-4} \,\mathrm{s}^{-1}}{5.74 \times 10^9 \,\mathrm{L} \,\mathrm{mol}^{-1} \,\mathrm{s}^{-1}}$$

$$= 3.4 \times 10^{-14} \,\mathrm{mol/L}.$$

Chapter 15 #19

Additional prob-

on

the

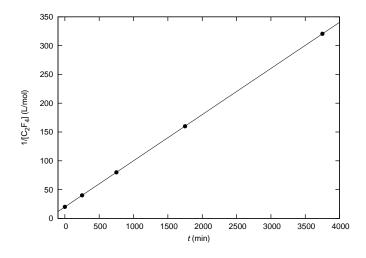
lems

(c)

$$\ln x = \ln x_0 - kt.$$

$$\therefore \ln(0.05 \,\text{bar}) = \ln(0.45 \,\text{bar}) - (2.0 \times 10^{-4} \,\text{s}^{-1})t.$$

$$\therefore t = \frac{\ln(0.45 \,\text{bar}) - \ln(0.05 \,\text{bar})}{2.0 \times 10^{-4} \,\text{s}^{-1}}$$


$$= 1.1 \times 10^4 \,\text{s}$$

$$\equiv \frac{1.1 \times 10^4 \,\text{s}}{3600 \,\text{s}/\text{h}}$$

$$= 3.1 \,\text{h}.$$

3. If the reaction is elementary, then according to the law of mass action it Chapter 15 #47 should follow the second-order rate law $v = k[C_2F_4]^2$. A plot of $1/[C_2F_4]$ and a secondvs t should be linear. Here is my graph:

order plot

The data fit the line nicely which supports the hypothesis that this is an elementary reaction.

The rate constant is equal to the slope of the graph. Using a couple of points on the graph, you should get (roughly)

$$k = 8.0 \times 10^{-2} \,\mathrm{L}\,\mathrm{mol}^{-1}\mathrm{min}^{-1}$$
.

4. (a) $Hg_{(aq)}$ Chapter 15 #49

(b) The equilibrium approximation can be applied to the first step:

$$k_1[\mathrm{Hg}_2^{2+}] \approx k_{-1}[\mathrm{Hg}^{2+}][\mathrm{Hg}].$$

 $\therefore [\mathrm{Hg}] \approx \frac{k_1[\mathrm{Hg}_2^{2+}]}{k_{-1}[\mathrm{Hg}^{2+}]}.$

The rate of reaction is

$$v = k_2[Hg][Tl^{3+}]$$

 $\approx \frac{k_1k_2[Hg_2^{2+}][Tl^{3+}]}{k_{-1}[Hg^{2+}]}.$

(c) According to our rate law, doubling the mercury (II) ion concentration cuts the rate in half.