Chemistry 2000 Fall 2017 Test 2 Version A

NAME: \qquad Student number: \qquad
Time: 90 minutes
Aids permitted: calculator (wireless communication capabilities OFF).
Significant figures: I will specifically ask when I want you to track your significant figures.
Otherwise, just give me a sensible number of digits in your answer given the precision of the data.

Overflow: If you need extra space for a question, make sure to give me a clear indication of where I can find the rest of your answer, and label any answers continued on another page with the question number.

Question	Mark
$\mathbf{1}$	$/ 7$
$\mathbf{2}$	$/ 3$
$\mathbf{3}$	$/ 6$
$\mathbf{4}$	$/ 6$
$\mathbf{5}$	$/ 7$
$\mathbf{6}$	$/ 18$
$\mathbf{7}$	$/ 7$
Total:	$/ 54$
Percentage:	$\%$

NAME: \qquad

1. When we burn a fuel in open air, the water produced would usually stay in the gas phase because the air is not saturated with water vapor. However, if we burn the same fuel in a closed vessel, the water often condenses on the walls of the vessel. Calculate the entropy change for the combustion of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}\right)$ in the gas phase producing (a) liquid water or (b) water vapor. Give your answers to the correct number of significant figures. Comment on differences in the size and/or sign of the answer. Do these differences make sense? [7 marks]
/3 2. Suppose that a reaction carried out at constant temperature and pressure has a positive $\Delta_{r} H$ value, and a negative $\Delta_{r} S$. Is there a temperature at which such a reaction would be thermodynamically allowed? Explain briefly. [3 marks]

NAME:
3. The following is a part of the phase diagram of sulfur: ${ }^{1}$

There are two distinct solid phases, distinguished by different crystal structures, as noted in the diagram. For the purpose of this question, it's not important what "rhombic" and "monoclinic" mean. Note the logarithmic scale of the ordinate. The notation used for this axis label means that the pressure was in units of kPa prior to taking the logarithm.
(a) Circle all triple points on the diagram. [2 marks]
(b) Estimate the normal freezing point of sulfur as accurately as you can from the diagram. What solid phase is obtained at the normal freezing point? [4 marks]

[^0]NAME:
4. The vapor pressure of liquid nicotinamide (a member of the B_{3} vitamin complex) has been measured at several temperatures. ${ }^{2}$ Here are two of the points:

T / K	$p /$ bar
396.07	2.388×10^{-4}
433.69	2.206×10^{-3}

What is the enthalpy of vaporization of nicotinamide? [6 marks]
5. Ethylene glycol has a melting point of $-11.5^{\circ} \mathrm{C}$, and an enthalpy of fusion at that temperature of $11234 \mathrm{~J} \mathrm{~mol}^{-1}$.
(a) What is the entropy change associated with fusion of ethylene glycol? [2 marks]

[^1]NAME:
(b) Use an argument based on entropy to show that solid ethylene glycol will melt in an environment at $0^{\circ} \mathrm{C}$. [5 marks]
6. The solubility product of calcium fluoride at $25^{\circ} \mathrm{C}$ is 1.61×10^{-10}.
(a) Calculate the solubility of calcium fluoride. [10 marks]

NAME:
(b) Calculate the standard free energy of formation of the aqueous calcium ion. In this question, carefully track your significant figures. [8 marks]
7. Could nickel react with carbon monoxide at a pressure of 0.15 bar at $25^{\circ} \mathrm{C}$ to form $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$? [7 marks]

NAME:

Constants and conversion factors

$$
\begin{aligned}
& 0 \mathrm{~K}=-273.15^{\circ} \mathrm{C} \\
& 1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar} \\
& R=8.314460 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Standard thermodynamic data

Species	$\frac{\Delta_{f} G^{\circ}}{\mathrm{kJ} \mathrm{mol}^{-1}}$	S°	
$\mathrm{CO}_{(\mathrm{g})}$	-137.36	219.22	
$\mathrm{CO}_{2(\mathrm{~g})}$	-394.4	197.5	
$\mathrm{CaF}_{2(\mathrm{~s})}$	-1173.51	213.7	
$\mathrm{~F}_{(\mathrm{aq})}^{-}$	-281.52	-9.87	
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	-237.192	69.940	
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$	-228.60	188.72	
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]_{(\mathrm{l})}$	-589.16	319.56	
$\mathrm{O}_{2(\mathrm{~g})}$	0	205.0	

Formulas

$$
\begin{array}{ll}
S=k_{B} \ln \Omega & \Delta S=\frac{q_{\mathrm{rev}}}{T} \\
\Delta G=\Delta H-T \Delta S & \Delta_{r} G_{m}=\Delta_{r} G_{m}^{\circ}+R T \ln Q \\
\Delta_{r} G_{m}^{\circ}=-R T \ln K & \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H_{m}^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{array}
$$

Activities

State	Activity (a)
Solid	1
Pure liquid	1
Ideal solvent	X
Ideal solute	c / c°
Ideal gas	p / p°

NAME:

1																	18
$\begin{array}{\|cc\|} \hline 1 & \mathrm{H} \\ 1.01 \end{array}$	2											13	14	15	16	17	$\begin{array}{\|cc\|} \hline 2 & \mathrm{He} \\ 4.00 \end{array}$
3 Li 6.94	$\begin{array}{\|cc\|}4 & \mathrm{Be} \\ 9.01\end{array}$											$\begin{array}{\|cc\|} \hline 5 & \mathrm{~B} \\ 10.81 \end{array}$	$\begin{array}{\|cc\|} \hline 6 & C \\ 12.01 \end{array}$	$\begin{array}{\|l\|} \hline 7 \\ \\ 14.01 \end{array}$	$\begin{array}{\|cc\|} \hline 8 & \mathrm{O} \\ 16.00 \end{array}$	$\begin{array}{\|cc\|} \hline 9 & \mathrm{~F} \\ 19.00 \end{array}$	$\left.\begin{array}{\|cc\|} \hline 10 & \mathrm{Ne} \\ 20.18 \end{array} \right\rvert\,$
$\begin{array}{\|cc\|} \hline 11 & \mathrm{Na} \\ 22.99 \end{array}$	$\begin{gathered} 12 \mathrm{Mg} \\ 24.31 \end{gathered}$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{\|cc\|} \hline 13 & \mathrm{Al} \\ 26.98 \end{array}$	$\begin{array}{\|cc\|} \hline 14 & \mathrm{Si} \\ 28.09 \end{array}$	$\begin{array}{\|cc\|} \hline 15 & \mathrm{P} \\ 30.97 \end{array}$	$\begin{array}{\|cc\|} \hline 16 & \mathrm{~S} \\ 32.07 \end{array}$	$\left\|\begin{array}{cc} \hline 17 & \mathrm{Cl} \\ 35.45 \end{array}\right\|$	$\left\|\begin{array}{cc} 18 & \mathrm{Ar} \\ 39.95 \end{array}\right\|$
$\left.\begin{array}{\|cc\|} \hline 19 & \mathrm{~K} \\ 39.10 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 20 & \mathrm{Ca} \\ 40.08 \end{array}$	$\begin{array}{\|cc\|} \hline 21 & \mathrm{Sc} \\ 44.96 \end{array}$	$\left\|\begin{array}{cc} 22 & \mathrm{Ti} \\ 47.88 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 23 & \mathrm{~V} \\ 50.94 \end{array}$	$\left\lvert\, \begin{array}{cc} 24 & \mathrm{Cr} \\ 52.00 \end{array}\right.$	$\begin{array}{cc} 25 & \mathrm{Mn} \\ 54.94 \end{array}$	$\begin{array}{\|cc\|} \hline 26 & \mathrm{Fe} \\ 55.85 \end{array}$	$\left.\begin{array}{\|cc\|} \hline 27 & \text { Co } \\ 58.93 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 28 & \mathrm{Ni} \\ 58.69 \end{array}$	$\begin{array}{\|cc\|} \hline 29 \mathrm{Cu} \\ 63.55 \end{array}$	$\begin{array}{\|cc\|} \hline 30 & \mathrm{Zn} \\ 65.41 \end{array}$	$\begin{array}{cc} \hline 31 & \mathrm{Ga} \\ 69.72 \end{array}$	$\begin{array}{\|cc\|} \hline 32 & \mathrm{Ge} \\ 72.61 \end{array}$	$\begin{array}{\|cc\|} \hline 33 \quad \mathrm{As} \\ 74.92 \end{array}$	$\begin{array}{\|cc\|} \hline 34 & \mathrm{Se} \\ 78.96 \end{array}$	$\left\|\begin{array}{cc} 35 & \mathrm{Br} \\ 79.90 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 36 & \mathrm{Kr} \\ 83.80 \end{array}$
$\left.\begin{array}{\|cc\|} \hline 37 & \mathrm{Rb} \\ 85.47 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 38 & \mathrm{Sr} \\ 87.62 \end{array}$	$\left\|\begin{array}{cc} 39 & \mathrm{Y} \\ 88.91 \end{array}\right\|$	$\left\|\begin{array}{cc} 40 & \mathrm{Zr} \\ 91.22 \end{array}\right\|$	$\left\|\begin{array}{cc} 41 & \mathrm{Nb} \\ 92.91 \end{array}\right\|$	42 Mo 95.94	43 Tc	$\begin{array}{\|cc\|} \hline 44 & \mathrm{Ru} \\ 101.07 \end{array}$	$\begin{array}{\|cc\|} \hline 45 & \mathrm{Rh} \\ 102.91 \end{array}$	$\begin{array}{cc} 46 & \mathrm{Pd} \\ 106.42 \end{array}$	$\begin{array}{\|cc\|} \hline 47 & \mathrm{Ag} \\ 107.87 \end{array}$	$\begin{array}{lr} \hline 48 & \mathrm{Cd} \\ 112.41 \end{array}$	$\begin{array}{lr} 49 & \text { In } \\ 114.82 \end{array}$	$\begin{array}{\|cc\|} \hline 50 & \mathrm{Sn} \\ 118.71 \end{array}$	$\left.\begin{array}{\|cc\|} \hline 51 & \mathrm{Sb} \\ 121.76 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 52 & \mathrm{Te} \\ 127.60 \end{array}$	$\left\|\begin{array}{cc} 53 & \mathrm{I} \\ 126.90 \end{array}\right\|$	$\left.\begin{array}{\|cc\|} \hline 54 & \mathrm{Xe} \\ 131.29 \end{array} \right\rvert\,$
$\left.\begin{array}{\|ll\|} \hline 55 & \text { Cs } \\ 132.91 \end{array} \right\rvert\,$	$\begin{array}{\|lr\|} \hline 56 & \mathrm{Ba} \\ 137.33 \end{array}$	$\left\|\begin{array}{lr} \hline 57 & \mathrm{La} \\ 138.91 \end{array}\right\|$	$\left\|\begin{array}{cc} 72 & \mathrm{Hf} \\ 178.49 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 73 & \mathrm{Ta} \\ 180.95 \end{array}$	$\left.\begin{array}{\|cc\|} \hline 74 & W \\ 183.85 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 75 & \mathrm{Re} \\ 186.21 \end{array}$	$\begin{array}{\|cc} \hline 76 \quad \text { Os } \\ 190.2 \end{array}$	$\begin{array}{\|lr\|} \hline 77 & \mathrm{Ir} \\ 192.22 \end{array}$	$\begin{array}{\|cc\|} \hline 78 & \mathrm{Pt} \\ 195.08 \end{array}$	$\begin{array}{\|cc\|} \hline 79 & \mathrm{Au} \\ 196.97 \end{array}$	$\begin{array}{lr} 80 & \mathrm{Hg} \\ 200.59 \end{array}$	$\begin{array}{\|lr} \hline 81 & \mathrm{Tl} \\ 204.38 \end{array}$	$\begin{array}{\|cc\|} \hline 82 & \mathrm{~Pb} \\ 207.2 \end{array}$	$\left.\begin{array}{\|cc\|} \hline 83 & \mathrm{Bi} \\ 208.98 \end{array} \right\rvert\,$	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							

$\begin{array}{\|cc\|} \hline 58 & \mathrm{Ce} \\ 140.12 \end{array}$	$\left\lvert\, \begin{array}{cc} 59 & \mathrm{Pr} \\ 140.91 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 60 & \mathrm{Nd} \\ 144.24 \end{array}\right.$	61 Pm	$\left\|\begin{array}{cc} 62 & \mathrm{Sm} \\ 150.36 \end{array}\right\|$	$\left.\begin{array}{\|cc\|} \hline 63 & \text { Eu } \\ 151.97 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 64 & \text { Gd } \\ 157.25 \end{array}$	$\left\lvert\, \begin{array}{cc} 65 & \mathrm{~Tb} \\ 158.93 \end{array}\right.$	$\begin{array}{\|ll\|} \hline 66 & \mathrm{Dy} \\ 162.50 \end{array}$	$\begin{array}{\|l\|} \hline 67 \text { Ho } \\ 164.93 \end{array}$	$\left\lvert\, \begin{array}{cc} 68 & \mathrm{Er} \\ 167.26 \end{array}\right.$	$\begin{array}{\|cc} \hline 69 \quad \mathrm{Tm} \\ 168.93 \end{array}$	$\begin{array}{cc} \hline 70 \quad Y b \\ 173.04 \end{array}$	$\left.\begin{array}{\|lr} \hline 71 & \mathrm{Lu} \\ 174.97 \end{array} \right\rvert\,$
$\left.\begin{array}{\|cc\|} \hline 90 & \text { Th } \\ 232.04 \end{array} \right\rvert\,$	$\begin{array}{\|cc} 91 & \mathrm{~Pa} \\ 231.04 \end{array}$	$\begin{array}{\|cc\|} \hline 92 & \mathrm{U} \\ 238.03 \end{array}$	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103

[^0]: ${ }^{1}$ Redrawn from A. G. M. Ferreira and L. Q. Lobo, J. Chem. Thermodyn. 43, 95 (2011).

[^1]: ${ }^{2}$ A. R. R. P. Almeida et al., J. Chem. Thermodyn. 82, 108 (2015).

