Chemistry 2000 Fall 2013 Test 2 Version A

NAME: \qquad Student number: \qquad
Time: 90 minutes
Aids permitted: calculator
Overflow space: Bottom of pages 8 and 10. If you do need extra space for a question, make sure to give me a clear indication of where I can find the rest of your answer, and label any answers continued in the overflow space with the question number.

Confidentiality agreement: I agree not to discuss (or in any other way divulge) the contents of this exam until after 5:00 p.m. Mountain Time on Wednesday, November 20. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of zero on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
路

Date: \qquad

Question	Mark
$\mathbf{1}$	$/ 4$
$\mathbf{2}$	$/ 4$
$\mathbf{3}$	$/ 2$
$\mathbf{4}$	$/ 8$
$\mathbf{5}$	$/ 4$
$\mathbf{6}$	$/ 14$
$\mathbf{7}$	$/ 15$
Total:	$/ 51$
Percentage:	$\%$

NAME:

1. Radon (Rn) is a radioactive noble gas formed as a result of the radioactive decay of thorium and uranium. Small quantities of thorium and uranium are found in many materials deriving from mineral sources, such as cement. Radon tends to accumulate in poorly ventilated spaces like basements, and can become a significant health hazard under some conditions.
${ }^{222} \mathrm{Rn}$ is the isotope formed in the ${ }^{238} \mathrm{U}$ decay chain. The isotopic mass of ${ }^{222} \mathrm{Rn}$ is 222.0176 u . What is the root-mean squared speed of the atoms in a ${ }^{222} \mathrm{Rn}$ gas at $20^{\circ} \mathrm{C}$?
$/ 4$ 2. When gaseous hydrogen chloride reacts with gaseous ammonia, solid ammonium chloride is formed:

$$
\mathrm{HCl}_{(\mathrm{g})}+\mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} .
$$

Since this reaction converts gases into a solid, it will be associated with a large decrease in entropy. This reaction, which is commonly observed when HCl and ammonia are improperly stored together, therefore contradicts the second law of thermodynamics and thus proves that the second law is wrong.

What is wrong with the above argument?

NAME: \qquad
/2
3. When a quartz capillary tube is dipped into an acetone solution, the acetone is drawn up into the capillary. Explain why this happens and what this tells us about the interaction between acetone and quartz.
/8
4. Is the reaction of NO with oxygen to make NO_{2} thermodynamically allowed at $25^{\circ} \mathrm{C}$ in the presence of 0.0041 bar of $\mathrm{NO}, 0.21$ bar of O_{2} and 0.0032 bar of NO_{2} ?

NAME:
5. The following is a sketch of part of the phase diagram of carbon: ${ }^{1}$

This phase diagram allows for the synthesis of diamond from graphite in several different ways. We tend to get better quality crystals by solidifying a melted substance than by using other paths through the phase diagram. Keeping this in mind, describe a sequence of temperature and pressure adjustments that would allow for the synthesis of high-quality diamonds from graphite. Clearly indicate how the required temperatures or pressures relate to features of the phase diagram. If it helps, you can show your proposed path on the phase diagram, but make sure to include a written explanation as well. You can also label any features of the phase diagram that are important to your answer.

[^0]NAME:
6. You may recall that HCl is a strong acid.
(a) Calculate the equilibrium constant for the reaction

$$
\mathrm{HCl}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

at $25^{\circ} \mathrm{C}$.
(b) Does the size of the equilibrium constant you calculated agree with the idea that HCl is a strong acid? Explain briefly.
(c) Concentrated HCl has a concentration of $12 \mathrm{~mol} \mathrm{~L}^{-1}$. Neglecting the fact that such a solution will be far from ideal, what would you estimate the equilibrium pressure of HCl to be over a concentrated HCl solution?

NAME: \qquad
7. Dimethylnaphthalene has several isomers, all of which are liquids over the range of temperatures studied below. The $1,5,1,6$ and 2,6 isomers, ${ }^{2}$ respectively numbered $\mathbf{1}$, 2 and $\mathbf{3}$ below, participate in the following equilibrium:

(a) At $235{ }^{\circ} \mathrm{C}$, the equilibrium mixture contains 34.79% of compound $\mathbf{1}, 35.10 \%$ of $\mathbf{2}$, and 30.11% of $\mathbf{3}$. Calculate the equilibrium constants K_{A} and K_{B} at this temperature.

Hint: Since these compounds are liquid, what we have here is a mixture of solvents. What is the relevant measure of activity for a solvent?

[^1]NAME:
(b) At $265^{\circ} \mathrm{C}, K_{A}=4.665$. What is the standard enthalpy change for the first reaction? Is this reaction exothermic or endothermic?

NAME:
(c) From these data, we can estimate that K_{A} would be 4.00×10^{-9} at $25^{\circ} \mathrm{C}$. What is the standard free energy change for this reaction? $\quad / 2$
(d) What is the standard entropy change for the first reaction? Which compound has the higher entropy, compound $\mathbf{1}$ or compound 2 ?

NAME:

Constants and conversion factors

Atomic mass unit (u)
Avogadro's number $\left(N_{A}\right)$
Boltzmann's constant $\left(k_{B}\right)$
Ideal gas constant (R)
$1.6605 \times 10^{-27} \mathrm{~kg}$
$6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
$1.3806 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ $8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
$1 \mathrm{bar}=100 \mathrm{kPa}$
$1 \mathrm{~atm}=1.01325 \mathrm{bar}$

Standard thermodynamic data

Species	$\frac{\Delta_{f} G^{\circ}}{\mathrm{kJ} \mathrm{mol}}$
$\mathrm{Cl}_{(\mathrm{aq})}^{-}$	-131.218
$\mathrm{HCl}_{(\mathrm{g})}$	-95.30
$\mathrm{NO}_{(\mathrm{g})}$	86.60
$\mathrm{NO}_{2(\mathrm{~g})}$	51.32

Formulas

$$
\begin{array}{lll}
p V=n R T & \left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T & \\
\bar{K}=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T & \bar{K}_{m}=\frac{3}{2} R T & v_{\mathrm{rms}}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 R T}{M}} \\
S=k_{B} \ln \Omega & \Delta S=\frac{q_{\mathrm{rev}}}{T} & \\
\Delta G=\Delta H-T \Delta S & \Delta_{r} G_{m}=\Delta_{r} G_{m}^{\circ}+R T \ln Q & \Delta_{r} G_{m}^{\circ}=-R T \ln K \\
\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H_{m}^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) & & \\
X=\frac{n}{\sum n} & p_{A}=X_{A} p_{A}^{\bullet} & {[\mathrm{A}]=k_{H} p_{A}} \\
\mathrm{pH}=-\log _{10}\left(a_{\mathrm{H}^{+}}\right) & &
\end{array}
$$

Activities

State	Activity (a)
Solid	1
Pure liquid	1
Ideal solvent	X
Ideal solute	c / c°
Ideal gas	p / p°

NAME:

1																	18
$\begin{array}{cc} 1 & \mathrm{H} \\ 1.01 \end{array}$	2											13	14	15	16	17	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 14.01	$\begin{array}{\|cc\|}8 & \text { O } \\ 16.00\end{array}$	$\begin{array}{cc}9 & \mathrm{~F} \\ 19.00\end{array}$	10 Ne 20.18
$\begin{array}{cc} \hline 11 \mathrm{Na} \\ 22.99 \end{array}$	$\begin{array}{\|c\|} \hline 12 \mathrm{Mg} \\ 24.31 \end{array}$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{\|cc\|} \hline 13 & \mathrm{Al} \\ 26.98 \end{array}$	$14 \quad \mathrm{Si}$ 28.09	15 P 30.97	16 S 32.07	$\begin{array}{cc}17 & \mathrm{Cl} \\ 35.45\end{array}$	$\left.\begin{array}{\|cc\|} \hline 18 & \mathrm{Ar} \\ 39.95 \end{array} \right\rvert\,$
$\begin{array}{\|cc} \hline 19 \mathrm{~K} \\ 39.10 \end{array}$	$\begin{array}{\|cc\|} \hline 20 & \mathrm{Ca} \\ 40.08 \end{array}$	$\begin{array}{\|cc\|} \hline 21 & \mathrm{Sc} \\ 44.96 \end{array}$	$\begin{array}{\|cc\|} \hline 22 & \mathrm{Ti} \\ 47.88 \end{array}$	$\begin{array}{\|cc\|} \hline 23 & \mathrm{~V} \\ 50.94 \end{array}$	$\left\lvert\, \begin{array}{cc} 24 & \mathrm{Cr} \\ 52.00 \end{array}\right.$	$\begin{array}{\|cc\|} \hline 25 & \mathrm{Mn} \\ 54.94 \end{array}$	$\left\lvert\, \begin{array}{cc} 26 & \mathrm{Fe} \\ 55.85 \end{array}\right.$	$\left.\begin{array}{\|cc\|} \hline 27 & \text { Co } \\ 58.93 \end{array} \right\rvert\,$	$\left\lvert\, \begin{array}{cc} 28 & \mathrm{Ni} \\ 58.69 \end{array}\right.$	$\begin{array}{\|cc\|} \hline 29 \mathrm{Cu} \\ 63.55 \end{array}$	$\begin{array}{\|cc\|} \hline 30 & \mathrm{Zn} \\ 65.41 \end{array}$	$\begin{array}{cc} \hline 31 \mathrm{Ga} \\ 69.72 \end{array}$	$\begin{array}{\|cc\|} \hline 32 & \mathrm{Ge} \\ 72.61 \end{array}$	$\begin{array}{\|cc\|} \hline 33 \quad \mathrm{As} \\ 74.92 \end{array}$	$\begin{array}{\|cc\|} \hline 34 & \mathrm{Se} \\ 78.96 \end{array}$	$\left\|\begin{array}{cc} 35 & \mathrm{Br} \\ 79.90 \end{array}\right\|$	$\left.\begin{array}{\|cc\|} \hline 36 & \mathrm{Kr} \\ 83.80 \end{array} \right\rvert\,$
$\begin{array}{\|c\|} \hline 37 \mathrm{Rb} \\ 85.47 \end{array}$	$\begin{array}{\|cc\|} \hline 38 & \mathrm{Sr} \\ 87.62 \end{array}$	$\left\|\begin{array}{cc} 39 & \mathrm{Y} \\ 88.91 \end{array}\right\|$	$\left\lvert\, \begin{array}{cc} 40 & \mathrm{Zr} \\ 91.22 \end{array}\right.$	$\left\|\begin{array}{cc} 41 & \mathrm{Nb} \\ 92.91 \end{array}\right\|$	$\begin{array}{\|cc} \hline 42 \quad \text { Mo } \\ 95.94 \end{array}$	43 Tc	$\begin{array}{\|cc\|} \hline 44 & \mathrm{Ru} \\ 101.07 \end{array}$	$\left\|\begin{array}{cc} 45 & \mathrm{Rh} \\ 102.91 \end{array}\right\|$	$\left\|\begin{array}{cc} 46 & \mathrm{Pd} \\ 106.42 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 47 & \mathrm{Ag} \\ 107.87 \end{array}$	$\begin{array}{ll} \hline 48 & \mathrm{Cd} \\ 112.41 \end{array}$	$\begin{array}{lr} \hline 49 & \text { In } \\ 114.82 \end{array}$	$\begin{array}{\|cc\|} \hline 50 & \text { Sn } \\ 118.71 \end{array}$	$\begin{array}{\|cc\|} \hline 51 & \mathrm{Sb} \\ 121.76 \end{array}$	$\begin{array}{\|cc\|} \hline 52 & \mathrm{Te} \\ 127.60 \end{array}$	$\left\|\begin{array}{cc} 53 & \mathrm{I} \\ 126.90 \end{array}\right\|$	$\left\|\begin{array}{ll} 54 & \mathrm{Xe} \\ 131.29 \end{array}\right\|$
$\begin{array}{lr} \hline 55 & \mathrm{Cs} \\ 132.91 \end{array}$	$\begin{array}{\|lr\|} \hline 56 & \mathrm{Ba} \\ 137.33 \end{array}$	$\left\|\begin{array}{lr} \hline 57 & \mathrm{La} \\ 138.91 \end{array}\right\|$	$\left.\begin{array}{\|cc\|} \hline 72 & \mathrm{Hf} \\ 178.49 \end{array} \right\rvert\,$	$\begin{array}{\|cc\|} \hline 73 & \mathrm{Ta} \\ 180.95 \end{array}$	$\begin{array}{\|cc\|} \hline 74 & W \\ 183.85 \end{array}$	$\begin{array}{\|cc\|} \hline 75 & \mathrm{Re} \\ 186.21 \end{array}$	$\begin{array}{\|cc\|} \hline 76 \quad \text { Os } \\ 190.2 \end{array}$	$\begin{array}{\|ll\|} \hline 77 & \mathrm{Ir} \\ 192.22 \end{array}$	$\begin{array}{\|cc\|} \hline 78 & \mathrm{Pt} \\ 195.08 \end{array}$	$\begin{array}{cc} \hline 79 \quad \mathrm{Au} \\ 196.97 \end{array}$	$\begin{array}{ll} \hline 80 & \mathrm{Hg} \\ 200.59 \end{array}$	$\begin{array}{\|lr} \hline 81 & \mathrm{Tl} \\ 204.38 \end{array}$	$\begin{array}{\|cc\|} \hline 82 & \mathrm{~Pb} \\ 207.2 \end{array}$	$\begin{array}{\|cc\|} \hline 83 & \mathrm{Bi} \\ 208.98 \end{array}$	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							

$\begin{array}{\|cc\|} \hline 58 & \text { Ce } \\ 140.12 \end{array}$	$\left\lvert\, \begin{array}{cc} 59 & \mathrm{Pr} \\ 140.91 \end{array}\right.$	$\begin{array}{\|cc\|} \hline 60 & \mathrm{Nd} \\ 144.24 \end{array}$	61 Pm	$\left\|\begin{array}{cc} 62 & \mathrm{Sm} \\ 150.36 \end{array}\right\|$	$\begin{array}{\|cc\|} \hline 63 & \mathrm{Eu} \\ 151.97 \end{array}$	$\left\|\begin{array}{cc} 64 & \mathrm{Gd} \\ 157.25 \end{array}\right\|$	$\left\|\begin{array}{cc} 65 & \mathrm{~Tb} \\ 158.93 \end{array}\right\|$	$\begin{array}{l\|} \hline 66 \text { Dy } \\ 162.50 \end{array}$	$\begin{array}{\|l\|} \hline 67 \text { Ho } \\ 164.93 \end{array}$	$\begin{array}{\|cc\|} \hline 68 & \mathrm{Er} \\ 167.26 \end{array}$	$\begin{array}{\|cc\|} \hline 69 & \mathrm{Tm} \\ 168.93 \end{array}$	$\begin{array}{cc} 70 & \mathrm{Yb} \\ 173.04 \end{array}$	$\begin{array}{\|lr} \hline 71 & \mathrm{Lu} \\ 174.97 \end{array}$
$\left.\begin{array}{\|cc\|} \hline 90 & \mathrm{Th} \\ 232.04 \end{array} \right\rvert\,$	$\begin{array}{\|cc} 91 & \mathrm{~Pa} \\ 231.04 \end{array}$	$\begin{array}{\|cc\|} \hline 92 & \mathrm{U} \\ 238.03 \end{array}$	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

[^0]: ${ }^{1}$ Adapted from Bundy, Physica A 156, 169 (1989).

[^1]: ${ }^{2}$ The numbering specifies positions of the methyl groups around the naphthalene core. All data in this question are from Kraikul et al., Chem. Eng. J. 114, 73 (2005).

