Chemistry 1000 Lecture 24: Group 14 and Boron

Marc R. Roussel

November 2, 2018

Marc R. Roussel

Group 14

• In this group again, we see a full range of nonmetallic to metallic behavior:

C is a nonmetal.

Si and Ge are metalloids.

Sn and Pb are metals.

• Carbon is the central element in most biomolecules.

Also widely distributed as carbonate minerals (many of biological origin), coal, graphite and diamond.

Also present in atmosphere as CO $_2$ (seasonally averaged current value of 405 ppm, rising by about 2 ppm/year)

- Si is the second most abundant element in the Earth's crust (after O), mostly present in nature as silicon oxide (sand and related materials), quartz and silicate minerals.
- Sn and Pb are fairly abundant metals.
 Principal ores: SnO₂, PbS, PbSO₄ and PbCO₃

Allotropes of carbon

- Most stable allotrope: graphite
 - Moderately good electrical conductor, but its conductivity is anisotropic (different in different directions) in single crystals
- Diamond
 - Insulator
 - Hardest naturally occurring substance available in reasonable quantities
 - Lonsdaleite, another allotrope of carbon made during meteorite impacts, and wurtzite boron nitride, synthesized by detonation, may be harder.
 - Metastable at normal pressures
- Fullerenes, carbon nanotubes

Group 14

Graphite

• Graphite structure: stacked sheets

+ resonance structures

• Stacking:

Graphene

- Graphene is a single carbon sheet with the graphite structure.
- Originally made by Geim and Novoselov (Nobel Prize 2010) using very high-tech scientific equipment: adhesive tape!
- Graphene has very strange properties:
 - Although it's only one atom thick, a sheet of graphene absorbs 2.3% of white light impinging on it.
 - Less resistive than silver (best metallic conductor at room temperature)
 - About 200 times stronger than an equivalent weight of steel

Diamond

• Network solid made of four-coordinate tetrahedral carbons

Fullerenes

- Small carbon "balls" discovered in 1985 by Curl, Kroto and Smalley (Nobel Prize 1996)
- Many different fullerenes, of which the most common is C_{60}

- Made of hexagons and pentagons
- \bullet Lots of molecules in this family (C70, C76, C78, . . .), including some smaller than C60
- Can put stuff inside the cavity to alter electrical or other material properties

Carbon nanotubes

- Essentially, a rolled-up graphite sheet http://upload.wikimedia.org/wikipedia/commons/5/53/ Types_of_Carbon_Nanotubes.png
- Incredibly strong material
 - Tensile strength over 50 times larger than that of high-carbon steel

• Can put things inside the nanotubes, including other nanotubes http://www.nanotech-now.com/images/multiwall-large.jpg

Oxides of carbon

- There are two oxides of carbon, CO₂ and CO.
- CO₂ is obtained when carbon compounds are burned in an excess of oxygen.
- CO is an incomplete combustion product.
- As seen previously, CO₂ is a Lewis acid.
- CO on the other hand is a Lewis base.

Ocean acidification

• The Lewis acid CO₂ reacts with water:

$$\text{CO}_2 + \text{H}_2\text{O}_{(I)} \rightleftharpoons \text{HCO}_{3(aq)}^- + \text{H}_{(aq)}^+$$

- As the atmospheric CO₂ concentration increases, Le Chatelier's principle tells us this equilibrium will shift to the right.
- This results in ocean acidification.
- The effects of ocean acidification vary greatly depending on local geography and geology (currents, rock composition, etc.).
- A rough estimate is that acidity of the oceans (i.e. [H⁺]) is increasing at a rate of about 0.4% per year.
- Dumping large amounts of CO₂ in the atmosphere is a planetary-scaled experiment in altering the chemistry of the biosphere.

CO as a Lewis base

- Lewis diagram: $\stackrel{\bigcirc}{\bullet}$ C = $\stackrel{\oplus}{\circ}$
- The negative (carbon) end is more strongly Lewis acidic.
- Carboxyhaemoglobin is formed in a Lewis acid-base reaction between CO and the Lewis acidic iron(II) ion in haemoglobin.

Image source: Wikimedia commons: http://en.wikipedia.org/wiki/File:Carboxyhemoglobin_from_1AJ9.png

Silicon dioxide

- Unlike CO₂, SiO₂ (silicon dioxide, a.k.a. silica) is a network solid.
- There are many different arrangements (including amorphous forms). In each case, the basic building block is an Si coordinated to four oxygen atoms in a tetrahedral shape.

Silicon dioxide: α -quartz

https://homepage.univie.ac.at/michael.leitner/lattice/ struk.picts/sio2a.s.png

Boron

- Relatively rare element
- Mostly found in nature as borate minerals (salts of oxoanions of boron)
- Very hard (between Al₂O₃ and diamond)
- Semiconductor
- Similar in chemical properties to Si (diagonal relationship):
 - Under normal conditions, does not react with oxygen, water, acids or bases
- Applications of boron and its compounds:
 - borosilicate glass (e.g. Pyrex)
 - composite materials
 - detergents and bleaches (borax: a mixture of $Na_2B_4O_7$ and related compounds)
 - transistors and microprocessors

Boron compounds

- Many boron compounds are electron deficient Lewis acids, e.g. BF₃.
- Boric acid, B(OH)₃, is a Lewis acid (not a Brønsted oxoacid, and definitely not a Brønsted base):

Boranes

- Boranes are boron-hydrogen compounds.
- Simplest borane: diborane, B₂H₆ (BH₃ only exists in the gas phase at higher temperatures)
- Try to draw a Lewis diagram for diborane.
- Not enough electrons for conventional two-electron bonds
- Three centre-two electron B-H-B bridging bonds

Boron

- Lots of other boranes, e.g.
 - Pentaborane, B_5H_9

• Decaborane, B₁₀H₁₄

