Chemistry 1000 Lecture 18: The kinetic molecular theory of gases

Marc R. Roussel

October 11, 2018

The kinetic molecular theory of gases

- Matter is in constant movement and, as we have seen, subject to a variety of intermolecular forces.
- Can we use basic ideas from physics to connect the microscopic forces acting on molecules to our everyday (macroscopic) world?
- Yes, if we take a statistical approach.
- This is made possible because of the very large size of Avogadro's number and with the help of the law of large numbers.
- In this context, the law of large numbers says that the behavior of a system containing many molecules is unlikely to deviate significantly from the statistical average of the properties of the individual molecules.

The Maxwell-Boltzmann distribution

- One of the results of the kinetic molecular theory is the Maxwell-Boltzmann distribution of molecular speeds.
- This is the probability distribution for the speeds (v) of molecules in a gas:

$$f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \exp\left(\frac{-Mv^2}{2RT}\right) v^2$$

where M is the molar mass of an isotopomer, R is the ideal gas constant, and T is the absolute temperature.

Typical speeds and the Maxwell-Boltzmann distribution

 $[^{16}O_2 \text{ at } 298.15 \text{ K } (25 \,^{\circ}\text{C})]$

Maxwell-Boltzmann distribution for ¹⁶O₂ at different temperatures

Maxwell-Boltzmann distribution: Effect of mass

$$[T = 300 \, K]$$

Assumptions of the kinetic molecular theory for ideal gases

• The particles (molecules or atoms) of the gas are small compared to the average distance between them.

Corollary: The particles occupy a negligible fraction of the volume.

- These particles are in constant motion.
- There are no intermolecular forces acting between them, except during collisions.
 - a good approximation for real gases provided the gas is at a sufficiently low pressure so that the distance between the molecules is *very* large.
- At constant temperature, the energy of the gas is constant.

Pressure of an ideal gas

Basic bits of physics we need:

Pressure: p = F/A

Newton's second law: $F = ma = m\frac{\Delta v}{\Delta t}$

Newton's third law: For every action there is an equal and opposite reaction.

- The pressure on the wall of a container will be the force exerted on it due to collisions of molecules with the wall divided by the area of the wall.
- This force will be the negative of the sum of the average forces experienced by all the molecules.

- For simplicity, imagine a rectangular container containing an ideal gas.
- Consider a single particle impacting the wall:

- We choose the coordinate system so that the *x* axis is perpendicular to the wall.
- The y and z components of the velocity won't affect the pressure on this wall.
- If the total energy is conserved, then on average, the *x* component of the velocity after collision is just the negative of this component before collision.

- $\Delta v_x = v_{x,after} v_{x,before} = -v_x v_x = -2v_x$
- How often do collisions with this wall occur?
- If L_x is the x dimension of the container, then the particle travels $2L_x$ before returning, so the time between collisions is $\Delta t = 2L_x/v_x$.
- The average force experienced by one particle over time due to collisions with this wall is therefore

$$F_{x} = m \frac{\Delta v_{x}}{\Delta t} = -\frac{m v_{x}^{2}}{L_{x}}$$

• If $\overline{v_x^2}$ is the average value of v_x^2 for all the molecules in the gas, then the force on the wall is

$$F = \frac{Nm\overline{v_x^2}}{L_x}$$

where N is the total number of molecules of gas.

The mean squared speed is

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$$

• There is no physical difference between the three directions in space, so $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$, from which we conclude that $\overline{v_x^2} = \frac{1}{3}\overline{v^2}$.

$$F = \frac{Nm\overline{v^2}}{3L_x}$$

• p = F/A, so

$$p = \frac{Nm\overline{v^2}}{3AL_x} = \frac{Nm\overline{v^2}}{3V}$$

using the fact that the area of the wall times the distance between the walls is the volume of the container.

$$pV = \frac{1}{3}Nm\overline{v^2}$$

Root mean squared speed and temperature

$$pV = \frac{1}{3}Nm\overline{v^2}$$

- In this equation, m is the mass of one molecule and N is the number of molecules.
- We have $N = nN_A$ and $m = M/N_A$.

$$\therefore pV = \frac{1}{3}nM\overline{v^2}$$

• Experimentally, we know that pV = nRT for dilute (ideal) gases. Combining the two, we get

$$\frac{1}{3}M\overline{v^2} = RT \Longrightarrow \overline{v^2} = \frac{3RT}{M} \Longrightarrow \sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{M}}$$

• $\sqrt{\overline{v^2}}$ is the root mean squared (rms) speed.

Example: rms speed of N₂

- The calculation of rms speeds is straightforward, provided we use SI units consistently.
- The SI unit of mass is the kg.
- For N₂, $M = 2(14.0067 \times 10^{-3} \text{ kg/mol}) = 2.80134 \times 10^{-2} \text{ kg/mol}$.
- At room temperature, we would have

$$\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.314472 \,\mathrm{J\,K^{-1}mol^{-1}})(293 \,\mathrm{K})}{2.80134 \times 10^{-2} \,\mathrm{kg/mol}}}$$

$$= 511 \,\mathrm{m/s}$$

The Boltzmann constant

Recall the ideal gas equation

$$pV = nRT$$

• If we want to rewrite the ideal gas equation in terms of the number of molecules (rather than the number of moles of molecules), we use $n = N/N_A$:

$$pV = (N/N_A)RT = N(R/N_A)T$$

• $R/N_A \equiv k_B$ is Boltzmann's constant. It is the ideal gas constant on a per molecule basis.

$$pV = Nk_B T$$
 $k_B = 1.380\,649 imes 10^{-23}\,\mathrm{J\,K^{-1}}$

Average kinetic energy

$$pV = \frac{1}{3}Nm\overline{v^2}$$

• The average kinetic energy is $K = \frac{1}{2}m\overline{v^2}$, so

$$pV = \frac{2}{3}NK$$

• Since $pV = Nk_BT$, equating the two expressions for pV gives

$$K = \frac{3}{2}k_BT$$

Why and when the ideal gas law breaks down

- Not all gases behave ideally under all conditions.
- Intermolecular forces can be significant.
- The volume taken up by the molecules can be a significant fraction of the total volume of the container.
- Both of these effects become more important as the density of the gas increases.
- The density is proportional to

$$\frac{n}{V} = \frac{p}{RT}$$

so nonideal effects should become important at high pressures or at low temperatures.

Excluded volume

- The molecules occupy some of the volume of the container.
- The volume available for them to move in is therefore less than the total volume of the container.
- We can correct for this by subtracting the excluded volume, which will be proportional to the number of molecules, from the total volume in the ideal gas law:

$$p(V - nb) = nRT$$

• b is a constant determined experimentally and is about four times the volume of a molecule times Avogadro's constant.

Intermolecular forces

- Provided the density isn't too high, intermolecular forces are primarily attractive, as discussed in a previous lecture.
- Attractive forces will tend to decrease the pressure:
 As a molecule approaches the container wall, there is an imbalance between the number of molecules ahead of it and the number behind. The force of attraction from molecules behind provide a braking force which slows the approach of a molecule to the wall, and thus decreases the force of impact.

- The attractive force is found to depend on the square of the density.
- Including this correction in the equation of state for a gas would give

$$\left(p + \frac{an^2}{V^2}\right)V = nRT$$

where a is a constant determined experimentally that depends on the strength of the intermolecular forces, and thus on the particular gas we are studying.

van der Waals equation

Putting both corrections together, we get the van der Waals equation:

$$\left(p + \frac{\mathsf{a} \mathsf{n}^2}{V^2}\right) (V - \mathsf{n} \mathsf{b}) = \mathsf{n} \mathsf{R} \mathsf{T}$$

• Solving the vdW equation for p isn't too difficult:

$$p = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

Example

For N₂, $a=0.1408\,\mathrm{Pa}\,\mathrm{m}^6\mathrm{mol}^{-2}$ and $b=3.91\times10^{-5}\,\mathrm{m}^3/\mathrm{mol}.$ If we have 40 mol of N₂ in 1.0 m³ at 298 K, then

$$\begin{split} p &= \frac{nRT}{V - nb} - \frac{an^2}{V^2} \\ p &= \frac{(40\,\text{mol})(8.314\,472\,\text{J}\,\text{K}^{-1}\text{mol}^{-1})(298\,\text{K})}{1.0\,\text{m}^3 - (40\,\text{mol})(3.91\times 10^{-5}\,\text{m}^3/\text{mol})} \\ &\quad - \frac{(0.1408\,\text{Pa}\,\text{m}^6\text{mol}^{-2})(40\,\text{mol})^2}{(1.0\,\text{m}^3)^2} \\ &= \frac{(40\,\text{mol})(8.314\,472\,\text{J}\,\text{K}^{-1}\text{mol}^{-1})(298\,\text{K})}{0.9984\,\text{m}^3} \\ &\quad - \frac{(0.1408\,\text{Pa}\,\text{m}^6\text{mol}^{-2})(40\,\text{mol})^2}{(1.0\,\text{m}^3)^2} \\ &= 99\,264 - 225\,\text{Pa} = 99\,\text{kPa} \end{split}$$

Example

Suppose we have 4000 mol of N_2 in 1.0 m^3 at 298 K:

$$\begin{split} \rho &= \frac{(4000\,\text{mol})(8.314\,472\,\text{J}\,\text{K}^{-1}\text{mol}^{-1})(298\,\text{K})}{1.0\,\text{m}^3 - (4000\,\text{mol})(3.91\times 10^{-5}\,\text{m}^3/\text{mol})} \\ &\qquad - \frac{(0.1408\,\text{Pa}\,\text{m}^6\text{mol}^{-2})(4000\,\text{mol})^2}{(1.0\,\text{m}^3)^2} \\ &= \frac{(4000\,\text{mol})(8.314\,472\,\text{J}\,\text{K}^{-1}\text{mol}^{-1})(298\,\text{K})}{0.8436\,\text{m}^3} \\ &\qquad - \frac{(0.1408\,\text{Pa}\,\text{m}^6\text{mol}^{-2})(4000\,\text{mol})^2}{(1.0\,\text{m}^3)^2} \\ &= 1.175\times 10^7 - 2.25\times 10^6\,\text{Pa} = 9.5\,\text{MPa} \end{split}$$

• Using the ideal gas law, we would have predicted 9.9 MPa.