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The kinetic molecular theory of gases
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The kinetic molecular theory of gases

@ Matter is in constant movement and, as we have seen, subject to a
variety of intermolecular forces.

@ Can we use basic ideas from physics to connect the microscopic forces
acting on molecules to our everyday (macroscopic) world?
@ Yes, if we take a statistical approach.

@ This is made possible because of the very large size of Avogadro’s
number and with the help of the law of large numbers.

@ In this context, the law of large numbers says that the behavior of a
system containing many molecules is unlikely to deviate significantly
from the statistical average of the properties of the individual
molecules.
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Ideal gases

The Maxwell-Boltzmann distribution

@ One of the results of the kinetic molecular theory is the
Maxwell-Boltzmann distribution of molecular speeds.

@ This is the probability distribution for the speeds (v) of molecules in a

gas:
M O\
f(v)=4n (27TRT> exp ( BT > v

where M is the molar mass of an isotopomer, R is the ideal gas
constant, and T is the absolute temperature.
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Ideal gases

Typical speeds and the Maxwell-Boltzmann distribution
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Ideal gases

Maxwell-Boltzmann distribution for 20, at different
temperatures
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Ideal gases

Maxwell-Boltzmann distribution: Effect of mass
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Ideal gases

Assumptions of the kinetic molecular theory
for ideal gases

@ The particles (molecules or atoms) of the gas are small compared to
the average distance between them.

Corollary: The particles occupy a negligible fraction of the volume.
@ These particles are in constant motion.

@ There are no intermolecular forces acting between them, except
during collisions.

e a good approximation for real gases provided the gas is at a sufficiently
low pressure so that the distance between the molecules is very large.

@ At constant temperature, the energy of the gas is constant.
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Ideal gases

Pressure of an ideal gas

Basic bits of physics we need:
Pressure: p=F/A
Newton's second law: F = ma = m%

Newton's third law: For every action there is an equal and opposite
reaction.

@ The pressure on the wall of a container will be the force exerted on it
due to collisions of molecules with the wall divided by the area of the
wall.

@ This force will be the negative of the sum of the average forces
experienced by all the molecules.
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Ideal gases

@ For simplicity, imagine a rectangular container containing an ideal gas.
o Consider a single particle impacting the wall:

y

@ We choose the coordinate system so that the x axis is perpendicular
to the wall.

@ The y and z components of the velocity won't affect the pressure on
this wall.

o If the total energy is conserved, then on average, the x component of
the velocity after collision is just the negative of this component
before collision.
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Ideal gases

o Avy = Vx,after — Vx before = —Vx — Vx = —2vx

@ How often do collisions with this wall occur?

o If Ly is the x dimension of the container, then the particle travels 2L,

before returning, so the time between collisions is At = 2L,/ v.

@ The average force experienced by one particle over time due to

collisions with this wall is therefore

Avy mv
FX = m = —

At Ly

X

o If 73 is the average value of v?2 for all the molecules in the gas, then

the force on the wall is L
F_ Nmv2
Ly

where N is the total number of molecules of gas.
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Ideal gases

@ The mean squared speed is
2 _ 2 2 2
vi=vg+ v+ g

@ There is no physical difference between the three directions in space,

o) v2 = v2 = v2 from which we conclude that v2 = §v2

Nmv?2
3L,

F =

e p=F/A so

Nmv2 B Nmv2

3AL, 3V

using the fact that the area of the wall times the distance between
the walls is the volume of the container.

p:

1
pV = §va2
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Ideal gases

Root mean squared speed and temperature

1. —
V = ZNmv2
p 3 v

@ In this equation, m is the mass of one molecule and N is the number
of molecules.
@ We have N = nNa and m = M/Nj.

1
. pV = ZnMy2
.p 3n v

@ Experimentally, we know that pV = nRT for dilute (ideal) gases.
Combining the two, we get

1 — — RT RT
§MV2:RT:>V2:37:>\/ SRT

@ V/ v? is the root mean squared (rms) speed.
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Ideal gases

Example: rms speed of N,

@ The calculation of rms speeds is straightforward, provided we use Sl
units consistently.

@ The Sl unit of mass is the kg.
e For Ny, M = 2(14.0067 x 10~3kg/mol) = 2.80134 x 10~2 kg/mol.

@ At room temperature, we would have

= _ \/ﬁ_ 3(8.314472 J K—1mol=1)(293 K)
VM 2.80134 x 102 kg/mol
= 511lm/s
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Ideal gases

The Boltzmann constant

@ Recall the ideal gas equation
pV = nRT

o If we want to rewrite the ideal gas equation in terms of the number of
molecules (rather than the number of moles of molecules), we use
n = N/NA:
pV = (N/Na)RT = N(R/Na) T

@ R/N4 = kg is Boltzmann's constant.
It is the ideal gas constant on a per molecule basis.

pV = Nkg T
kg = 1.380649 x 1073 JK!
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Ideal gases

Average kinetic energy

1 —
pV = §va2

. . . _1_ "5
@ The average kinetic energy is K = 3mv=, so

2
V =-NK
PY =3
@ Since pV = Nkg T, equating the two expressions for pV gives

K=3ksgT
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Why and when the ideal gas law breaks down

@ Not all gases behave ideally under all conditions.
@ Intermolecular forces can be significant.

@ The volume taken up by the molecules can be a significant fraction of
the total volume of the container.

@ Both of these effects become more important as the density of the
gas increases.

@ The density is proportional to

n_p

VvV~ RT

so nonideal effects should become important at high pressures or at
low temperatures.
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Nonideal gases

Excluded volume

@ The molecules occupy some of the volume of the container.

@ The volume available for them to move in is therefore less than the
total volume of the container.

@ We can correct for this by subtracting the excluded volume, which
will be proportional to the number of molecules, from the total
volume in the ideal gas law:

p(V — nb) = nRT

@ b is a constant determined experimentally and is about four times the
volume of a molecule times Avogadro’s constant.
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Nonideal gases

Intermolecular forces

@ Provided the density isn't too high, intermolecular forces are primarily
attractive, as discussed in a previous lecture.

@ Attractive forces will tend to decrease the pressure:
As a molecule approaches the container wall, there is an imbalance
between the number of molecules ahead of it and the number behind.
The force of attraction from molecules behind provide a braking force
which slows the approach of a molecule to the wall, and thus
decreases the force of impact.
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Nonideal gases

@ The attractive force is found to depend on the square of the density.

@ Including this correction in the equation of state for a gas would give

2
an
(P + \/2> V =nRT
where a is a constant determined experimentally that depends on the

strength of the intermolecular forces, and thus on the particular gas
we are studying.
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Nonideal gases

van der Waals equation

@ Putting both corrections together, we get the van der Waals equation:

<p+ 2) (V —nb) =nRT

@ Solving the vdW equation for p isn't too difficult:

_ _nRT _ an’
P=V V2
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Nonideal gases

Example

For Np, a = 0.1408 Pam®mol=2 and b = 3.91 x 107> m3/mol.
If we have 40 mol of Ny in 1.0m?> at 298K, then

nRT an?
V—nb V2
~ (40mol)(8.314472 J K 1mol~1)(298 K)
P~ 1.0m3 — (40 mol)(3.91 x 10-5 m?/mol)
(0.1408 Pa m®mol~2)(40 mol)?
(1.0m3)2
(40 mol)(8.314 472 J K~ tmol~1)(298 K)

0.9984 m3
(0.1408 Pa m®mol~2)(40 mol)?

(1.0m3)2
= 99264 — 225 Pa = 99 kPa

p:
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Nonideal gases

Example

Suppose we have 4000 mol of N5 in 1.0m3 at 208 K:

(4000 mol)(8.314 472 J K~ 1mol~1)(298 K)
P~ 1.0m3 — (4000 mol)(3.91 x 10-5m3/mol)
(0.1408 Pa m®mol~2)(4000 mol)?
(1.0m3)?
(4000 mol)(8.314 472 J K~tmol~1)(298 K)

0.8436 m3
(0.1408 Pa m®mol~2)(4000 mol)?

(1.0m3)?
=1.175 x 10" — 2.25 x 10° Pa = 9.5 MPa

@ Using the ideal gas law, we would have predicted 9.9 MPa.
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