Chemistry 1000 Lecture 14: The group 13 metals

Marc R. Roussel

October 1, 2018

Marc R. Roussel

- All the elements in group 13 except boron are metals.
- \bullet Common ions: Al^{3+}, Ga^{3+}, In^+, Tl^+, also sometimes In^{3+} and Tl^{3+}
- Under typical reactions, these metals don't react with water.
- At room temperature, the oxide formed is M_2O_3 .
- Al(OH)₃, Ga(OH)₃ and In(OH)₃ are all insoluble in water, but TIOH is very soluble.

Aluminium is a good reducing agent ($E^{\circ}_{Al^{3+}/Al} = -1.662$).

- Thallium has many compounds of its +1 ion.
- TI⁺ and K⁺ are very similar in size: 164 and 152 pm, respectively. In the body, TI⁺ can go wherever K⁺ can go, which is pretty much everywhere.
- Most thallium compounds are toxic. Tl₂SO₄ was once used as a rat and ant poison.
- Thallium(I) sulfate is tasteless, so it was once a popular poison, nicknamed "inheritance powder".
- Unlike K⁺, TI⁺ reacts with sulfur ligands, disrupting proteins containing cysteine in particular.

• Like Be, AI is passivated by an oxide layer which forms extremely rapidly when the metal is exposed to air.

• Aluminium oxide

- is hard (Mohs hardness 9, just below diamond)
- has a high melting point (2072 °C)
- is non-porous

Anodization of aluminium

• Deliberate, electrolytic thickening of the oxide layer:

$$2\mathsf{AI}_{(\mathsf{s})} + 3\mathsf{H}_2\mathsf{O}_{(\mathsf{I})} \rightarrow \mathsf{AI}_2\mathsf{O}_{3(\mathsf{s})} + 6\mathsf{H}^+_{(\mathsf{aq})} + 6\mathsf{e}^-$$

- Has the following effects:
 - Makes Al more chemically resistant
 - Makes Al harder
 - May be used to pigment the oxide layer with appropriate additives

• Al_2O_3 is amphoteric.

Reaction with acid:
$$AI_2O_{3(s)} + 6H^+_{(aq)} \rightarrow 2AI^{3+}_{(aq)} + 3H_2O_{(I)}$$

Reaction with base: $AI_2O_{3(s)} + 2OH^-(aq) + 3H_2O_{(I)} \rightarrow 2[AI(OH)_4]^-_{(aq)}$

Reactions of Al with acids

 HNO₃ is an oxidizing acid because it typically attacks metals through the reduction of NO₃⁻:

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$$

• For AI, this reaction, just tends to make the oxide layer thicker, i.e. makes the metal more passive:

$$2\mathsf{AI}_{(s)} + 2\mathsf{NO}_3^- + 2\mathsf{H}^+ \rightarrow \mathsf{AI}_2\mathsf{O}_{3(s)} + 2\mathsf{NO}_{(g)} + \mathsf{H}_2\mathsf{O}_{(l)}$$

• Al reacts with non-oxidizing acids (e.g. HCl) in the typical way for a metal:

$$\mathsf{Al}_{(\mathsf{s})} + 3\mathsf{H}^+_{(\mathsf{aq})} \to \mathsf{Al}^{3+}_{(\mathsf{aq})} + \frac{3}{2}\mathsf{H}_{2(\mathsf{g})}$$

Why does this work despite the passivation layer?

• Aluminium metal can be oxidized in aqueous base:

$$\mathsf{AI}_{(\mathsf{s})} + \mathsf{OH}_{(\mathsf{aq})}^{-} + 3\mathsf{H}_2\mathsf{O}_{(\mathsf{I})} \rightarrow [\mathsf{AI}(\mathsf{OH})_4]_{(\mathsf{aq})}^{-} + \frac{3}{2}\mathsf{H}_{2(\mathsf{g})}$$

• Aluminium can react with acid or base, so it is amphoteric.

Acid-base properties of AI(OH)₃

- Al(OH)₃ is amphoteric.
- Reaction with acid (typical for metal hydroxides):

$$\mathrm{AI}(\mathrm{OH})_{3(s)} + 3\mathrm{H}_3\mathrm{O}^+_{(aq)} \rightarrow [\mathrm{AI}(\mathrm{H}_2\mathrm{O})_6]^{3+}_{(aq)}$$

• Reaction with base (unusual for a metal hydroxide):

$$\mathsf{AI}(\mathsf{OH})_{3(\mathsf{s})} + \mathsf{OH}^{-}(\mathsf{aq}) \rightarrow [\mathsf{AI}(\mathsf{OH})_4]^{-}_{(\mathsf{aq})}$$

Production of aluminium

- Aluminium ore (bauxite) contains Al₂O₃, AlO(OH) and Fe₂O₃ (among other things).
- AI_2O_3 and AIO(OH) dissolve in base, but Fe_2O_3 doesn't:

$$\mathrm{Al_2O_{3(s)}+2OH^-(aq)+3H_2O_{(l)}\rightarrow 2[Al(OH)_4]^-_{(aq)}}$$

 $\mathsf{AIO}(\mathsf{OH})_{(\mathsf{s})} + \mathsf{OH}^{-}(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}_{(\mathsf{I})} \rightarrow [\mathsf{AI}(\mathsf{OH})_4]^{-}_{(\mathsf{aq})}$

• Filter off solid Fe₂O₃, then precipitate Al(OH)₃:

$$[\mathsf{AI}(\mathsf{OH})_4]^-_{(\mathsf{aq})} + \mathsf{H}_3\mathsf{O}^+_{(\mathsf{aq})} \to \mathsf{AI}(\mathsf{OH})_{3(\mathsf{s})} + 2\mathsf{H}_2\mathsf{O}_{(\mathsf{I})}$$

(There are other ways to precipitate out the hydroxide.)Recover aluminium oxide by heating:

$$2\mathsf{Al}(\mathsf{OH})_{3(s)} + \mathsf{heat} \to \mathsf{Al}_2\mathsf{O}_{3(s)} + 3\mathsf{H}_2\mathsf{O}_{(g)}$$

Production of aluminium (continued)

- Al_2O_3 has a very high melting point (2072 °C).
- A 15:85 mixture of Al₂O₃ and cryolite (Na₃AlF₆) has a melting point of about 1000 °C.
- This molten mixture is electrolyzed using a graphite anode:

$$\begin{array}{ll} \mbox{Anode:} & C_{(s)} + 2O_{(l)}^{2-} \to CO_{2(g)} + 4e^{-} \\ \mbox{Cathode:} & Al_{(l)}^{3+} + 3e^{-} \to Al_{(l)} \\ \mbox{Overall:} & 3C_{(s)} + 6O_{(l)}^{2-} + 4Al_{(l)}^{3+} \to 4Al_{(l)} + 3CO_{2(g)} \end{array}$$

• Liquid aluminium is denser than the ionic liquid from which it is electrolyzed, so it is collected from the bottom of the electrolysis vat.