Chemistry 1000 Lecture 10: Metals and crystal structures

Marc R. Roussel

October 3, 2018

Marc R. Roussel

Metals and crystal structures

October 3, 2018 1 / 17

Classification of the elements

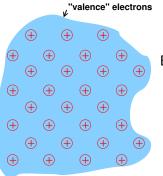
Element	Appearance	${\sf Resistivity}/\Omega{\sf m}$	Fluoride(s)
Na	silvery solid	$4.2 imes10^{-8}$	ionic NaF
Ca	silvery solid	$3.9 imes10^{-8}$	ionic CaF ₂
Ni	silvery solid	$6.8 imes10^{-8}$	ionic NiF ₂
Al	silvery solid	$2.7 imes10^{-8}$	molecular Al ₂ F ₆
Hg	silvery liquid	$9.8 imes10^{-7}$	ionic Hg_2F_2 and HgF_2
Ge	grey solid	$4.6 imes10^{-2}$	molecular GeF ₄ and GeF ₂
Sb	silvery solid	$3.9 imes10^{-7}$	molecular SbF $_3$ and SbF $_5$
В	black solid	$1.8 imes10^4$	molecular BF_3
Р	white solid	$1.0 imes10^9$	molecular PF ₃ , PF ₅
			and P_2F_4

Metal: malleable, ductile, good conductor of heat and electricity, shiny, resistivity increases with increasing T

Nonmetal: brittle when solid, poor conductor of heat and electricity (insulator)

Metalloid: intermediate between metal and nonmetal, often semiconducting

Semiconductor: electrical conductivity is between that of a conductor and insulator, resistivity decreases with increasing T


Q& A about bonding in metals

Question: Why do metals conduct electricity? Answer: They must have free electrons.

Question: On an atomic level, what distinguishes metals from nonmetals?

Answer: Metals give up their electrons relatively easily (low ionization energies).

Quasi-free-electron model of metals

Explains metal

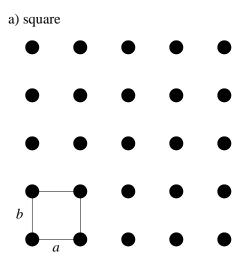
- heat and electrical conductivity
- deformability (ductility, malleability)

Crystal structure of metals

• Metals typically are (poly)crystalline.

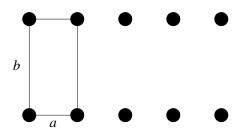
Crystal lattice: repeating arrangement of points in space Polycrystal: a material composed of many microscopic crystals (grains) stuck together in different orientations Grain boundary: surface where two grains meet Single crystal: a material composed of a single, (nearly) perfectly ordered crystalline material without grain boundaries

• Even in a polycrystal, relatively few atoms are at the grain boundary so most are surrounded by a well-organized crystal environment.

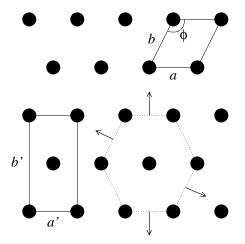

Unit cells

• The lattice can be generated by sliding a unit cell along lattice vectors.

• No rotation or reflection of unit cells is allowed, only sliding.

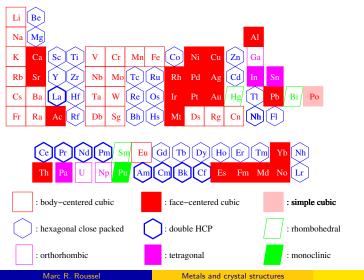

• The smallest unit cell is the primitive unit cell.

Some lattices and unit cells in two dimensions

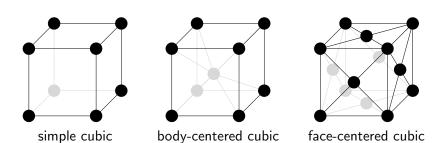


b) rectangular

Possible crystal lattices


• In three dimensions, there are exactly 14 distinct crystal lattices known as Bravais lattices.

https:


//en.wikipedia.org/wiki/Bravais_lattice#In_3_dimensions

Possible crystal lattices (continued)

• Almost all metals crystallize in a cubic or hexagonal lattice.

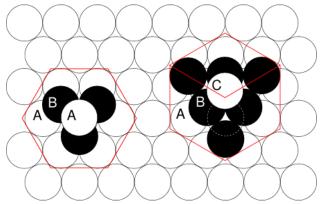
Cubic structures

Marc R. Roussel

Metals and crystal structures

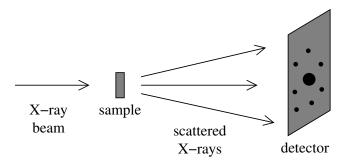
Counting atoms in a rectangular unit cell

- A corner atom is shared between 8 unit cells $\therefore \frac{1}{8}$ of an atom is inside any given cell.
- A facial atom is shared between 2 unit cells
 ∴ ¹/₂ of an atom is inside any given cell.
- Simple cubic: $8 \times \frac{1}{8} = 1$ atom per unit cell
- bcc: $8 \times \frac{1}{8} + 1 = 2$ atoms per unit cell


• fcc:
$$8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$
 atoms per unit cell

Closest packing

- Some structures are packed more efficiently (leave less empty space) than others.
- fcc is also known as cubic closest packed (ccp) because it has the minimum empty space.
 74% of the space is occupied by atoms.
- An identical packing fraction is obtained for the hexagonal closest packed (hcp) structure.


Closest packing (continued)

• hcp and fcc structures are closely related.

• hcp structure described as ABAB... fcc structure described as ABCABC...

X-ray diffraction

From this experiment, we get

- crystal structure (bcc, hcp, etc.)
- positions of atoms within unit cell
- dimensions of unit cell