Palladium Catalyzed Coupling Reactions

Mechanism:

- Pd(PPh₃)₄ is OK for simple substrates.
- Pd₂(dba)₃ + 4 PR₃ → "Pd(PR₃)₂" often much more active and can choose PR₃. (dba = dibenzylidene acetone)
- PdCl₂ or Pd(OAc)₂ + several equiv. of PR₃ are often used → Pd^{II} is mysteriously reduced to Pd⁰ before catalysis can begin.
- CsF or KF often added → F⁻ coordinates to ArB(OH)₂ or ArSnR₃ to make a better leaving group.
- KO^tBu often present: (1) often necessary to remove HX formed in the reaction, (2) can do same thing as F⁻, (3) may help with precatalysis reduction of Pd^{II} to Pd⁰.

Formed from RC₂H and Cul

Heck Reaction Mechanism

<u>Alkene Hydrogenation</u> (Dihydride Intermediate)

- [RhCl(PPh₃)₃] (Wilkinson's Catalyst)
- [{Rh(NBD)(m-Cl)}₂] + 4 PR₃ or [{Ir(COD)(m-Cl)}₂] + 4 PR₃
- [Ir(COD)(PMePh₂)₂][PF₆] or [Ir(COD)(PCy₃)(Py)][PF₆]
- [Rh(NBD)(bidentate phosphine)][PF₆]

- (NBD = norbornadiene)
- (COD = 1,5-cyclooctadiene)

- Note: Hydrogenation involves 1,2-insertion, so *syn*-addition to the alkene is observed.
- Note: Less substituted alkenes are hydrogenated faster.

Rh-Catalyzed Alkene Hydroformylation

