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Abstract

In this paper, we discuss various large sample estimation techniques in a nonlinear
regression model. We propose estimators on the basis of preliminary tests of significance
and James-Stein rule. The properties of these estimators are studied in the problem of
estimating regression coefficients in the multiple regression model when it is a priori
suspected that the coefficients may be restricted to a subspace.

A simulation based on a demand for money model shows the superiority of the
positive-part shrinkage estimator over a range of economically meaningful parameter
values. This indicates that this estimator can be usefully employed in important prac-
tical situations.

Keywords: nonlinear regression, restricted estimation, shrinkage and pretest estima-
tors, quadratic bias and risk, simulation.



1. Introduction

For many years, it has been known that shrinkage techniques yield estimators which
are superior in terms of risk than the maximum likelihood estimator (MLE) over the entire
parameter space (Gruber, 1998, p. 1). Gruber provides a recent starting point which surveys
this extensive literature. Be this as it may, these estimators have not found extensive use,
owing to the absence of means to compute confidence bands. Recently, however, Kazimi and
Brownstone (1999) have proposed confidence bands based on bootstrap techniques. They
find that “...simple percentile bootstrap confidence bands perform well enough to support
empirical applications of shrinkage estimators.” (Kazimi and Brownstone, 1999, p. 99).

Shrinkage estimators have been developed for many situations, including the linear re-
gression model. However, many of the models the econometrician wishes to estimate are
nonlinear, and often include regressors for which instrumental variables estimation would be
necessary, to yield consistent estimators. There would be little practical purpose in devel-
oping such estimators, however, without the prospect of their being a useful addition to the
applied econometrician or statistician’s repertoire. We consider the application of shrinkage
estimation to the nonlinear regression model. Shrinkage estimators of the James and Stein
type (Stein, 1956; James and Stein, 1961) are presented which have superior performance
in terms of bias and risk over other estimators considered, under a variety of conditions. In
what follows, three such estimators are developed. Their ADB and ADR properties are then
analysed.

Nonlinear Least Squares

To fix ideas, consider the regression model,

y =al8] +e. (1.1)

where z[3] is an n x 1 vector of elements, x;[3] = z[z; B], being nonlinear in the parameter
vector, 3, and z; is a & x 1 vector in k-dimensional Euclidean space. The functional form of
x; is identical over all observations, + = 1,...,n. The vector, 3 is p x 1. The elements of ¢
are unknown errors or fluctuations, with the properties assumed below.

The objective is to estimate the parameter vector, 3, using nonlinear least squares. The

minimisation of SS[B] = [y — =(8)]T[y — z(8)] by choice of 3 yields the set of first-order
conditions,

{y —=[B]}"X[8] =0 (1.2)
where X[8] = 9z[8]/08 |5, is the n x p matrix of derivatives of z[8], evaluated at the

nonlinear least squares estimator, 3.
Under the following regularity conditions:

A1 The fluctuations, ¢;, in the model (1.1) are independent and identically distributed
random variables with a continuous distribution function F on the real line ® =
(—o0,4+00); We do not make specific assumptions about the functional form of F|,
although we do assume that VAR[e;] = 0%,0% > 0,Vi=1,...,n;

A2 For all 4, z;[3] is a continuous function of 3, for B € B;



A3 B is a closed and bounded subset of p-dimensional Euclidean space;

A4 (a) n'5,[B,8,] converges uniformly for all 3,3, € B to a continuous function,
5[8,84]; and

A4 (b) D[B,87] = 0 if and only if 8 = 37, that is, D[3,37] is p081tlve definite. where
5,08.8,) = -, a.(Bl2i(8,] = [8)z[8,], and D,[B,8,] = T, [1:(8) — w:(B,)]? =
[2(8) — «(B))]"[x(8) — =(B,)],

B can be consistently estlmatedl1 by [3 using the Gauss-Newton regression (GNR) of {y —
z[B1} on X[3], where 3 is a set of startlng values for 3. Let d' be the estimates of the

coefficients on X[ﬂl] at iteration . Then [3 = BZ + czi, and this iteration procedure contin-
ues until an appropriate convergence criterion is satisfied, yielding B at the final iteration.
A consistent estimator of the variance-covariance matrix of B is given by the estimator of
“+” indicates the estimator of the deviation vector
on the last iteration. This variance-covariance estimator can be denoted

the variance-covariance of d* where the

VAR[B] = 6*{X[8]"X[B]} (1.3)

A2

where 62 = eTe/n, and ¢ = y — w[B] It should also be noted that @ is asymptotically

normally distributed, given the following additional regularity conditions
A5 3" is an interior point of B. Let B® be an open neighbourhood of 8" in B.

A6 The first and second derivatives, dz;[3]/98, and 9*z;[8]/98,008,, (r,s = 1,...,p) exist

and are continuous for all 3 € B.

AT (1/n)SM(0%x(8)/08)(9%x:(8)/08) [= n~'FT(B)F (B)] converges to some matrix,
Q(B) uniformly in 3 for 3 € B".

A8 (1/n) X 10%x:(8)/08,08,)° converges uniformly in 8 for 3 € B*,(r,s =1,...,p).
A9 Q = Q(B7) is nonsingular.

(see Seber and Wild, 1985, Chapter 12.2.3).
Statement of the problem

Suppose that @ can be partitioned such that 8 = [37 | BL]". The sub-vectors, 3, and 3,
are assumed to have dimensions ¢ x 1 and r x 1 respectively, and p = g + r. The associated
GNR required to estimate 3 will then be

y — (8] = X,[B]d, + X3[B]d; + p (1.4)

where X;[3] = 92[8]/08; |5, ¢ = 1,2 are n x g and n x r matrices of derivatives of z[8] with
respect to B;, © = 1,2 respectively, evaluated at the nonlinear least squares (NLS) estimator.

1See Seber and Wild (1989) Chapter 12.1-12.2 for a detailed discussion of the role played by each of these
assumptions.



For later developments, we also denote the partitioned matrix

X[8] = {X4[B]1X2[3]} (1.5)

and the product matrix,

T X, [81TX4 (8] X4[B]7TX.[8]

We are interested in the estimation of the parameter vector, 3,, in the presence of some
sort of non-sample information (NSI) about 3,.

Non-sample Information

We are primarily interested in the estimation of the regression parameter sub-vector
B1 when the NSI or uncertain prior information (UPI) about B2 is readily available. This
situation may arise when there is over-modelling and one wishes to remove the irrelevant part
of the model, (1.1), and increase the efficiency of estimating 3. For example, alluding to the
simulation example which will follow, suppose that there is uncertainty over the functional
form of a money demand relationship. The functional form could be linear or nonlinear
in parameters, and some of the elements of z; could perhaps be excluded. The possible
linearity in parameters and exclusion restrictions on elements of z; (comprising the NSI)
could be ignored. However, this NSI may be used to estimate the parameters of interest.
Thus, the regression parameter vector can be partitioned, and it is plausible that 35 is near
to some specified 37 which, without loss of generality, may be set to a null vector. The NSI
may thus be formulated as

NSI: 3, =0 (1.7)

In this investigation we are interested in the robust statistical estimation of the parameter
vector B3 when the UPI or NSI in (1.7) is available. In the present study, emphasis is on a
situation where the sample size is large, while the parameter vector 35 is taken to be close
to 33, in this case, 0. We shall study the large sample properties of the proposed estimators,
in the light of a quadratic loss function.

The plan of the paper is as follows. In section 2, along with preliminary notation and
basic assumptions, the estimators are formally introduced. Expressions for the asymptotic
distributional quadratic bias (ADB) and asymptotic distributional quadratic risks (ADR)
of the estimators under local alternatives are then obtained in section 3. Comparative risk
performances are then provided in section 4. Section 5 provides simulation results for the
proposed estimators based on an example involving a demand for money function. Section 6
concludes. Throughout this paper, boldface symbols will represent vector/matrix quantities.

2. Background and Proposed Estimation

Let C[8] = X[B]TX[3], then denote the product matrix decomposition, (1.6), as follows

C[Culf) CulBl] [ XBXul8) X8I Xul8] | <imr
C[m—[czl[m cmw]]—[xzwﬁxl[m X, [87x,10] | = XA XIBL - (21)



We assume that ZC[3] — Q[B] as n — oo, where Q[A] is a positive definite matrix decom-
posed as

_ [ QuiBl Q[ 81— im L . o
Q[ﬂ] - l QZl[ﬁ] sz[ﬂ] ] ) ij[ﬂ] - nl_mo n C]k[ﬁ], J k=12 (2'2>

The unrestricted nonlinear least squares (URN) estimator, B, is obtained as the solution
to the system of equations, [y — J}(B)]TX[B] = 0, which is derived from differentiation of
the sum of squares function, S[3] = [y — =(8)]" [y — z(8B)]. Given the regularity conditions
stated in Section 1, S[@] is minimised at B Note that the URN vector, B, is based on sample
data only, and does not incorporate the NSI. However, it may be advantageous to use the
available NSI to obtain an improved estimator of 3. The statistical objective is therefore to

estimate the parameter vector B, when NSI is available.
Unrestricted Nonlinear Fstimation

The URN estimator, B, can be obtained in a variety of ways, depending on the nature
of the problem at hand. A consistent estimator of the variance-covariance matrix of this
estimator is given by the variance-covariance estimator in the GNR, (1.4). This variance-
covariance matrix is used in construction of the improved (shrinkage) estimators which follow.

Restricted Nonlinear FEstimatlion

The restricted nonlinear least squares (REN) estimator can be obtained by a variety
of methods also. Depending on the nature of the NSI, the REN could be a model linear
in parameters, or a model nonlinear in parameters but with fewer elements in z;. In the
example which follows in Section 5, both types of NSI are considered. In any event, the
REN estimator, 3, is the solution to the system of equations,

{y —2[B}"X[B] =0 (2.3)
in which the conditions B2 = 0 have been imposed as constraints.

It is well known that, for the linear regression model, an estimator subject to linear
restrictions (the restricted estimator) is more efficient (or, at least no less efficient) than
the unrestricted estimator. However, the restricted estimator will, in general, be biased and
inconsistent ( Kiefer and Skoog (1984)). Thus, the imposition of false restrictions on some of
the parameters of a statistical model generally causes all of the parameters estimates to be
biased and inconsistent. The bias does not disappear as the sample size gets larger. Applied
econometricians frequently find themselves in this kind of situation. Similar considerations
apply in the context of nonlinear models. The econometrician still wishes to estimate 3
without knowing whether or not the NSI, B, = 0, is true.

Pre-test Nonlinear Estimation

A natural first estimator to define is the pre-test or preliminary test nonlinear (PTN)
estimator, which is the URN when an appropriately constructed test statistic lies in a critical
region, and takes the value of REN otherwise:

Fi B i A, < A
B it A, >,
BN <A+ 8- 1A, > M.



Here A, is an appropriate test statistic for the null hypothesis 83 = 0 and A, is the critical

~P
value for a test of size a given by the null distribution of A,. Thus, 3 will be the REN
estimator, 3, when A, test does not reject the null hypothesis that the restrictions are
satisfied, and will be the URN estimator, 3 when the test fails to reject that hypothesis.

Large Sample Tests

Since URN and REN are consistent estimators (the latter only when the NSI is true), and
not unbiased in general, an appropriate large-sample test statistic, A,, for B2= 0 is required.
In this subsection we consider such a test statistic for the null hypothesis that

H,:B2=0 against [, #0. (2.4)

An appropriate test statistic for (2.4) can be defined as follows:

Ao = Bz [#(XT(B)ML(B)X.(8)) ™) Ba (25
where Ml(B) =1I, — Xl(,é)(XlT(B)Xl(B))_IXIT(B) is the orthogonal projection off the

A

span of the columns of X;(8). This means that if (XT(B)X(B))7! is partitioned in the

A

same way as XT(B)X(B), then the lower right block of the of the partitioned inverse is

A

XT(3)M,(8)X,(3))!. Using the earlier notation in (2.1), we define A,, as

A, = &_ZBzTczz.l(B)Bzv (2.6)

A A A A A

where Cay1(8) = Ca2(8) — C21(8)[C11(8)] ' C12(B). Under the regularity conditions, A1—
A9, assumed earlier the test statistic, A,, is asymptotically distributed as x(r)?, under the
null hypothesis, where r are the degrees of freedom, or number of restrictions on 3.

James-Stein-type Nonlinear Estimation

We can define the James-Stein-type nonlinear (JSN) estimator by

B =B+{1-cA]HB - B), (2.7)

~ JS N
where ¢ = is a shrinkage constant chosen in an interval such that @  dominates 3. In

particular, the value of ¢ which minimises the risk function of BJS is (n—p)(p—2)/[r(n—p+2)]
(Judge and Bock, 1978, p. 179) for the finite-sample case, and (p — 2) for the asymptotic
case.

A well-known difficulty with the (traditional) James-Stein estimator is its tendency to
“over-shrink” the resulting estimator “beyond” the unrestricted or maximum likelihood es-
timator, reversing the sign of the latter. This can occur when A, is very small relative to
¢, thereby yielding a “shrinkage factor”, ¢/A,, which is greater than unity in absolute value.
To moderate this effect, the positive-part James-Stein-type estimator has been suggested in
the literature. Analogously, we define the positive-part James-Stein-type nonlinear (PJSN)
estimator, as described below.

Positive-part James-Stein-type Nonlinear Estimation



Now, we truncate the JSN in relation (2.7) with its positive-part and to obtain the PJSN
as follows:

B =B+ {1 - A B - B), (2.8)

where we define the notation z* = maxz(0, z). This adjustment controls for the over-shrinking
~JS
problem inherent in 3 .

3. Asymptotic Distributional Results: Bias

The normal theory of BP and BJS was considered by Saleh and Han (1990) and Ali and
Saleh (1993). Ghosh et. al. (1989) provided the empirical Bayes solution to this problem.

~ P ~JS .
The asymptotic properties of least squares variants of @ and 8 , compared with 8 and

B were considered by Saleh and Sen (1987) and Ahmed (1997). However, the properties of
the proposed nonlinear variants of the estimators, BP,BJS and BJSP are not available for

the problem under consideration. In this paper we shall attempt to provide a comprehensive
study of this problem.

Since the test based on A,, is consistent against fixed alternatives, all the estimators based
on either Stein-rule or the preliminary-test approach become asymptotically isomorphic to
B as n — oo. Hence we will investigate asymptotic bias and risk under local alternatives,

and compare the relative performance of the estimators, URN, REN, PTN, JSN and PJSN.

Specifically, we consider a sequence { K, } of local alternatives defined by

. é
K, : Br=p2 + = (3.1)
nz
where 4 is a real fixed vector and § = (61,---,8())" € RE-r) Note that § = 0 implies
By = By, so (2.4) is a special case of {K,}. Under local alternatives, {K,}, the following
theorem facilitates computation of the ADB and, later, the ADR of the estimators outlined
above.

Theorem 3.1 Under {K,} and the usual regularity conditions, as n increases, A, follows
a non-central y? distribution with r degrees of freedom and non-centrality parameter:

6T 22.1 ° 6 .
A= QTW, Q22.(8°) = 7}1_{{)10% C22.4(8°) (3.2)

Using Theorem 3.1, and applying results from Judge and Bock (1978) given in Appendix B,
the ADB and ADR expressions will be presented in the the following respective theorems.
The ADB of an estimator 3" is defined as

ADB(B1y) = lim E{n?(8" - B)}. (3.3)

Theorem 3.2  Using the above definition of ADB, under {K,} in (3.1) and the assumed
regularity conditions, as n — oo,



ADB(B)
ADB(B)
ADB( P)
")

")

0,

Q1 (8°)Qiu2(B°)d

Q11 (8°)Qu2(B°)0 Hypa (X7 03 A)

(k = 2)Q7 (B°)Qua(B°)8 E (xi2,(A))

Q7 (8°)Q12(8°)8 | Hipalk — 2, A) + E{xi 2, (M) (xzFy(A)) > (k+2)}],

The notation H,(z ; A) indicates the noncentral x? distribution function, with non-centrality

parameter A and v degrees of freedom. Further, E (x;*(A)) = [;° 27 #d¢,(z ; A).

ADB(B
ADB(3”

For the special case of Qq2(3°) = 0, all the estimators are unbiased and hence they
are equivalent to each other with respect to the ADB measure. Due to this fact, we will
confine ourselves to the situation where Q12(8°) # 0, and the remaining discussions follow.
In this case, B is the only asymptotically unbiased estimator of 3, since it is unrelated to
the NSI. Furthermore, in order to analyse these bias functions, first we transform them into
scalar (quadratic) forms. Thus, we define the quadratic ADB (QADB) of an estimator 8% of

parameter vector 3 by
QADB(8") = [ADB(8")]" Qu12(8°) [ADB(8")] (3.4)
Let Q112(8°) = Q11(8°) — Q12(B8°)Qx% (8°)Q21(3°). Then, we can define the QADB for

the various estimators as follows:
QADB(B) =0,
QADB(B) =A%, A" =4§7Q(8°)9,
Q'(8°) = Qu(8°)Q1 (8°)Qn.2(8°)Q1} (8°)Qua(B)
QADB(B") =A*[Hysa(x} i A%,
QADB(B") =(k — 2 A" [E(\i (),
QADB(B”") =A* [Hipa(k — 2, A) + E{xi2y( AN (x2in(A)) > (k= 2))}]
Evidently, the QADB of 3 is an unbounded function of A*. The magnitude of its bias will
depend on the quantity A*.

In order to provide a meaningful comparison of the bias functions of the other estimators,
we state the following theorem:

Theorem 3.3 (Courant-Fisher, see Gruber (1998), p. 205) If B and D are two positive
semi-definite matrices with D nonsingular, both of order (m x m), then

chmin(BD™!) < < chmax(BD™Y) (3.6)

where chmin(-) and chmax(-) are the smallest and largest eigenvalues of (-) respectively, and
x is a column vector of order (m x 1). We note that the above lower and upper bounds are

8



equal to the infimum and supremum, respectively, of the ratio x? Bx/x"Dx for x # 0. Also,
for D = I, the ratio is known as the Rayleigh quotient for matrix B. As a consequence of
Theorem 3.3, we have

A*
) < chmax(Q"(B87) 2_21.1) (3.7)

~P
The quadratic bias of 3 is a function of A and a. For fixed «, this function begins at zero,
increases to a point, then decreases gradually to zero. As a function of « for fixed A, it is a
decreasing function of a € [0,1), with a maximum value at @ = 0 and zero at a = 1. On the

other hand, the quadratic bias of B starts from zero at A = 0, increases to a point, then

decreases towards zero, since F ()“;f_z(A)) is a decreasing, log-convex function of A. The

~ JSP & JS
quadratic bias curve of 3 remains below the curve of 3 for all values of A.

4. Asymptotic Distributional Results: Risk

For the purposes of ADR and loss, we confine our treatment to the case of a loss function
of the following form:

L(B", B; W) = a'n(B" — B)"W(B" - B), (3.8)

where W is positive semi-definite weighting matrix and a* is a positive scalar constant. Such
functions are generally called weighted loss functions. Then, the expected loss function is

defined:
E[L(B",B;W)] = R(B",8; W) = R(8",8) = R(B"), (3.9)

which is called the risk function. The risk function can be rewritten as
R(B",B; W) =nE{(8" — B)"W (8" - B)}
=n trace [W{E(8" — 8)(8" — 8)"}] (3.10)
=trace(WT'),

where T is the asymptotic covariance matrix of 8" and a* = 1.
Further, 3" will be termed an inadmissible estimator of 3 if there exists an alternative
estimator, 3™, such that

R(B™,B8) <R(B",8) forall (8, W), (3.11)

with strict inequality for some 3. We also say that 8™ dominates 8. If, instead of (3.11)
holding for every n, we have

lim R(8™,8) < lim R(8",8) forall B, (3.12)

n—o0

with strict inequality for some 3, then 3~ is termed an asymptotically inadmissible estimator
of B. In practice, the expression in (3.12) may be difficult to obtain. Hence, we consider

9



the ADR for the sequence { K.} of local alternatives defined in relation (3.1). Suppose that,
under local alternatives, n%(ﬂ* — ) has a limiting distribution given by

Fly) = lim P{va(8" — B) < y}. (3.13)

which is called the asymptotic distribution function ADF of 3*. Further, let

= //---/nydF(YL (3.14)

be the dispersion matrix which is obtained from the ADF, (3.13). The ADR may then be
defined as

R(B%; B) = trace(WT™). (3.15)

An estimator 8" is then said to dominate an estimator 8° asymptotically if, R(8";3) <
R(B°;8). If, in addition, R(8";8) < R(B°%;3) for at least some (8, W), then 3 strictly
dominates 3°.

Under local alternatives as described in (3.1) and the usual regularity conditions, with
a* = 072, we obtain the ADR functions of the proposed estimators by virtue of the following
theorem:

Theorem 3.4
ADR([}') trace(WQi,[8°)),
ADR(ﬂ) TGC@(WQH [ ]) + 6TQ 5
~ P

ADR(B ) = trace(WQH ,18°]) — trace(WQ;ﬁQ[ﬁo
0" Q8[2Hy12(X5 03 A) = Prpa(Xf i A)
ADR(B"") = ADR(B) + 67 Q°8(k* — ) E (xif4(2)) -
(k — 2)trace(WQg[B°){2E (xiZo(A)) — (k — 2)E (xiZ4(A))},
ADR(3™") = ADR(B”) + (k — 2)trace( WQM lw D[2E {xm I(X}2(A) < (k= 2)} -
(k= 2)E {Xita(A) (X3 12(A) < (k= 2)}] = trace(WQZ,[8°)) Hia (k — 2, A) +
8TQ 8 {2H 2 (k — 2;A) — Hk+4( —2A)} -
(k —2)87Q°8 [2E{x; 22 (A (x}4a(D) < (k= 2)} —
2E{Xk+4( )[(Xk+4(A) < (k - 2)} +
(k = 2) E{xita( A I (xEa(D) < (k= 2)}],

JHi2(Xh o A) +

.

where

Q° = Qu1(8°)Qr (B°)WQy; (8°)Qi2(87), (3.16)

Proof.  The above relations are obtained by the same arguments as in Section 4.3 of Judge

and Bock (1978).

10



4. Comparisons of ADR Functions

Again, here we discard the case where Q12(3°) = 0. In this situation, Q12(3°) =
Q11(B°). Then the ADR of all the estimators are reduced to the ADR of ,@ Hence, all the
estimators are ADR equivalent.

The ADR of B is unrelated to the NSI and hence does not depend on 4, but the
other estimators are functions of 4. With this in mind, we consider a special choice of
W = Qi12(8°), thereby giving the ADR expressions in Theorem 3.3 the interpretation
of a loss function in the metric of the Mahalanobis distance. For such a special choice
of W we have trace(WQi',[8°)) = p and trace(WQpi'[B8°]) = p — trace(Q°), where
Q° = Q12(8°)Q% (8°)Q21(8°)Q11 (B°). Thus, we note that the ADR(B) = p, which is
constant and independent of § € R,,.

Now, we compare 3 with [3 when the NSI is correct (that is, the null hypothesis is true).
In such a case, we have ADR(B) — ADR(B) = trace(Q°) > 0. Hence, when the restriction
is correctly specified 3 strictly dominates B However, when & moves away from the null
vector, the ADR of 8 monotonically increases and goes to 0o as 81 Q8 — oo. Thus, B may
not behave well when the assumed pivot is different from the specified value of 3,.

It can also be seen that ADR(B) < ADR(B) if 67Q°0 < trace(Q°). Further, by the

Courant-Fisher Theorem

67Qo6
hmin ° S o'~ Ao\ ¢ S hmaz‘ ). 4.1
Q) € T < () ()
Thus, ADR(B) intersects ADR(B) between the bounds given by
trace(Q°) trace(Q°)
Apax = ————~ and Apn= ——-= 4.2
Chmin(Qo) Chmax(Qo) ( )
Thus, for
trace(Q°) ]
Ae |0, ——= 4.3
[ 3

B has smaller risk than that of [3 Alternatively, for

Ae (%, oo) (4.4)

[3 has smaller ADR. Clearly, when A moves away from the null vector beyond the value

trace(Q°)/chmin(Q°), the ADR of B increases and becomes unbounded. This indicates that

the performance of 3 will depend strongly on the reliability of the NSI. The performance of
B is always steady throughout A € [0, 00).

AP N

In an effort to compare the statistical properties of 3 with 3, note that q)k+4(Xi,a; A) <
Hipo(Xias A) < @pya(X7450) =1 — @, for o € (0,1) and A > 0. The left hand side of the
above relation converges to 0 as A — co. Also, as [|d|| = co = A — oo, then @1 4(xF 5 A),

0'Q°0 Hyya (X3 03 A) and 8'Q°0Pri4(x7 ,; A) approach 0, and the risk of BP approaches the

N ~ P N
risk of 3. The risk of 3 is smaller than the risk of @ near the null hypothesis which keeps on
increasing crosses the risk of 3, reaches maximum then decreases monotonically to the risk

11



of B Hence a preliminary test approach controls the magnitude of the risk. The dominating
condition is given by

trace(WQu 2[B°])h(8)

ADR(B") < ADR(B) if §7Qed < ——— el reims,

(4.5)

where

h(é) = Hk+2(Xz,a§ A)v 9(5) = <I>k+4(xi,a; A)- (4-6)

AP N
There are points in the parameter space for which 8 is inferior to 8 and a sufficient
condition for this is that

tTGC@(WQu 2[B°])h(d)
2h(8) — g()

Moreover, as «a (the level of significance of the pre-test) tends to 1, ADR(BP) tends to
ADR(3).

We find that the performance of the PTN estimator, which combines sample information
with NSI depends heavily depend on the correctness of this NSI. The gain in risk can be

07Q% € (

,00) (4.7)

substantial over unrestricted estimation when NSI is nearly correct. However, B combines
the NSI in a superior way to that of BR, in the sense that the risk of BP is a bounded
function of the NSI. Though we will later show that BP is an inadmissible estimator, it is
quite robust with respect to ADR and does not require any extra condition on Q°, besides

the basic one that Q° # 0.
The choice of significance level for the preliminary test is one of the factors that determines

the shape of the risk function of the PTN estimator. Hence, the sampling properties of BP
depend, among other factors, on the size of the test chosen for the pre-test. Unfortunately,
this feature is often overlooked in applications. Since the size of test a is under the control of
the researcher, there exists a statistical decision problem for choosing a. We refer to Brook
(1976), Ahmed (1992) and others for a detailed discussion on the selection of a. Further
discussion on this matter is beyond the scope of the present paper.

~ ~R P
Remark: None of the three estimators, 3,3 or @ is inadmissible with respect to each
other. However, at § = 0, the risks of the estimators may be ordered according to the
magnitude of their risk as follows:

A

8"~ 8" -8, (4.8)

where the notation > stands for dominance.
Now, let us consider the JSN estimator in the case of the Mahalanobis distance metric of

~ JS N
ADR discussed earlier. We compare 3  with 3. The ADR expressions for these estimators

~ JS N
were given in Theorem 3.4. These reveal that 3 will dominate 3 if

25 (Xpi2(A)) = (k= 2)E (xi14(A))
E (X’I;i4(A))

5TQS < ltrace(Qo)l

(h+2) (4.9)
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Then by the use of Courant-Fisher Theorem, the condition in relation (4.9) can be rewritten

as:
© 28 (il (A)) — (k= 2)E (xpi (A
5= ltmce(Qo)] ) ¢ 4) o) , V. A>0, (4.10)
chimac(Q7) (K = ) F (xiia(2)
which in turn requires that p > 3 and chpq(Q°)/trace(Q°) < 2/(k+2). Thus, ADR(BJS) <

A

ADR() if the following set of conditions is satisfied:
(1) pmin = min(q, k),
(i1) Chmae(Q°) < Flrace(Q°),

(i) 0 < (k — 2) < min {583 — 4 2(k — 2)}.

~ JSP 5 JS
Finally, we compare the ADR performance of 3 and B . We may conclude from the
ADR relations for these estimators in Theorem 3.4 that

~ JSP
ADQR
Mjs) <1, forall 9, (4.11)
ADR(A™)
. . . . ~ JSP . X ~JS
with strict inequality for some §. Therefore, 3 asymptotically dominates 3  under local
alternatives. Hence, BJSP is also superior to B, and thus:
ADR(B”") < ADR(B”) < ADR(B). (4.12)

We observed that the JSN and PJSN estimators combine the sample and NSI in superior

way, since these estimators perform better than the 3 regardless of the correctness of the

NSI. However, the gain in ADR over 3 is substantial when the NSI is nearly correct. We
~ JSP TS
can also conclude that the proposed estimator, 3 , is asymptotically superior to 3 and

hence to B . However, the important point here is not the improvement in sense of lowering
~JS ~ JSP
the ADR by using the positive part of the 3 . More importantly, the components of 3

have the same sign as that of components of B In other words, B does not suffer from

~JS
the standard problem of James-Stein-type estimators (such as 8 ), in that it does not
over-shrink beyond 3.

5. A Simulated Application: The Demand for Money

One of the simplest examples to which the theoretical results in this paper can be applied
is a money demand function with autoregressive errors of order 1 (AR(1)). Parkin and Bade
(1992, p. 149) observe that the functional form of the demand for money which typically best
fits macroeconomic data is logarithmic in the quantity of real money demanded, depending
linearly on log real gross domestic product (GDP) and the level of the interest rate. Of
course, there has been much empirical research in this area, employing more sophisticated

13



functional forms than that indicated above. Hendry (1993) provides an exposition on various
considerations which one ought to take into account when estimating models of this sort.
In light of those considerations, we employ a model which includes a series of lags on all
variables indicated above, and where the interest rate enters logarithmically. The basic
model then takes the form

y=Zv+e (5.1)
and

€=¢e_1 +p (5.2)

where Z is an n x (p — 1) matrix of regressors to be defined in more detail below,  is a
(p — 1) x 1 vector of parameters to be estimated, €_; is € lagged one period and ¢ is the
autoregressive parameter. The vector g ~ N[0,0‘i[n]. Re-writing this in scalar form for
observations ¢t > 2,...,n, allowing for up to £ = 8 lags on each of the regressors in Z, and
adjusting for the autoregressive error structure yields a model which is nonlinear in 4 and

b,
¢
yr =(1 — &)1 + dyemr + Y [(Xowei — dXomi1)y2,] +

) =0 (5.3)

¢
Z[(Xs,t—i — ¢ Xs0-i1)v34] + Z[(X&t—i — & Xa—ic1)vaq) +

=0 =0

In the above, we let y; = In Mf,Xlt =InGNP;, X5, =1nP;, and Xy, =Inr,.

In the empirical literature dealing with the estimation of models which include a high
order of lagged regressors, it is common to consider strategies which can reduce the number
of parameters to be estimated, yet maintain a fairly long “memory” of past values which
influence y;. One means of achieving this objective is through the use of a polynomial
distributed lag (PDL) process (Almon, 1965). In this simulation, the URN estimator, B8,
is as indicated in (5.3) above, while the REN estimator, tilde8, is obtained by imposing
the restrictions which yield a PDL structure. In particular, let s = 2 be the degree of the
polynomial to which the parameters, v;;,7 = 2,...,4 and + = 0,..., ¢ are restricted. Then
~i; can be written

Vii= Y mi™ i =2,...,4andi=1,...,( (5.4)
m=0

For example, when j =2 and 1 = 3, v33 = a20+3 021+ 9-az2. Thus, since £ = §, the total
number of v;; parameters is twenty-seven, and these depend on only nine «;,, parameters.
This is in fact a set of r linear restrictions on the parameter vector 3 = [+ | ¢]T. This NSI
can be represented in the form

R3=r (5.5)

where R is a ¢ X k matrix with ¢ < k linearly independent rows, and r =0. R has three
diagonal blocks, R;, one for each set of parameters v, ;,vs5,; and 74, as follows Fomby, Hill
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and Johnson, 1984, pi41)

1 -8 28 =5 70 —-56 28 -8 1
-1 6 —14 14 0 -14 14 -6 1
4 —17 22 1 =20 1 22 —17 4
-4 11 -4 =9 0 9 4 —11 4
14 =21 —-11 9 18 9 —11 =21 14
| —14 7 13 9 0o -9 —-13 -7 14

with zeroes elsewhere in R and two additional columns of zeroes located in a way to allow
~1 and ¢ to be free of restrictions, even in REN.

The simulation of URN, REN, JSN and PJSN was based around quarterly Canadian

macroeconomic data extracted from the CANSIM database
http://datacenter.chass.utoronto.ca/cansim/

for the period from 1967-1998. Since the first eight observations were used to create the
lagged observations, this yields a sample size of n = 120 data points. The CANSIM series
numbers used were B1629 (M1B, currency and chequable deposits) for y;, D15721 (real GDP
at market prices, 1992 dollars) for Xy;, D15721 and D15689 (current-valued real GDP at
market prices) to obtain the implicit price deflator for X3, and B14006 (the Bank of Canada
rate) for Xy ..

The foregoing data were used to obtain initial values for REN, which are given as the
second column of Table 5.1. This also yielded a simulation experiment design value for
o, = 0.02, being the standard error of the nonlinear regression with the actual data. De-
partures from the null hypothesis implicit in REN were based around what could be viewed
as economically meaningful long-run values for the parameters of interest. That is, long-run
response elasticities of demand for money of 1.00 with respect to price, 0.75 with respect
to income and -0.90 with respect to interest rates. Short-run values consistent with these
long-run values are given in column 3 of Table 5.1. The difference between these two vectors
yields column 4 of Table 5.1, . For the purposes of the simulation experiment, departures
from REN were estimated at 200 data points, with the 100’th data point representing the
data-generating process implicit in column 3 of Table 5.1.

Given the nature of URN, which includes y;_;, C[3] changes with every replication of
the simulation, unlike the standard linear or nonlinear regression model. In addition, it is
well-known that the linear variants of JSN and PJSN only have their desirable properties
(in terms of risk) when

trace[ X7 X]™! /wmax > 2 (5.7)
where Wy is the largest eigenvalue of [XT X]~! (Judge and Bock, 1976 and Trivedi, 1978).

We take these considerations into account when designing the simulation experiment, and
in the calculation of the empirical risk functions for each estimator. In particular, we verify
that (5.7) is met for each replication, and we normalise the computation of the empirical
risk functions by C[3].

The URN, REN, JSN and PJSN estimators were computed based on N = 500 replications
at REN, and the data-generating processes implicit in Table 5.1, as previously described.
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Table 5.1: URN and REN Parameter Values

for Simulation Experiments.

Parameter URN REN Step
B -1.9289  -1.9289 0.0000E+00
10 0.8920  0.8920 0.0000E+00
B2.0 0.4000 -0.0770 0.4770E-02
B21 0.3300 -0.0720 0.4020E-02
B2.2 0.1500 -0.0586 0.2086E-02
B23 0.0500 -0.0367 0.8673E-03
B2.4 0.0200 -0.0063 0.2634E-03
Ba25 0.0125 0.0326 -.2005E-03
B26 0.0125 0.0799 -.6744E-03
B2z 0.0125 0.1358 -.1233E-02
B2s 0.0125 0.2002 -.1877E-02
B30 0.3500  0.1141 0.2359E-02
B34 0.2000  0.2097 -.9723E-04
B2 0.1500 0.2784 -.1284F-02
B33 0.0300  0.3200 -.2900E-02
B34 0.0100  0.3348 -.3248E-02
B35 0.0025 0.3226 -.3201E-02
Bse 0.0025 0.2834 -.2809E-02
Bsz 0.0025 0.2172 -.2147E-02
Bss 0.0025 0.1242 -.1217E-02
Bao -0.6000 -0.0640 -.5360E-02
Ban -0.1500 -0.0488 -.1012E-02
B2 -0.0500 -0.0361 -.1390E-03
Bas -0.0200 -0.0259 0.5899E-04
Baa -0.0100 -0.0182 0.8213E-04
Bas -0.0175 -0.0130 -.4464E-04
Bas -0.0175 -0.0104 -.7131E-04
Baz -0.0175 -0.0102 -.7289E-04
Bas -0.0175 -0.0126 -.4937E-04

Note: The parameter values in the REN column are those implied by a second-order
polynomial distributed lag structure. These values are based on the underlying values of:
az0 = 0.077,a27 = 0.0007, 052 = 0.004, 30 = 0.1141, a3 ; = 0.1091, 32 = —0.0135, g0 =
—0.064, 047 = —0.0165, 042 = —0.0013. These values were obtained as the estimates from
estimating the PDL model with the CANSIM data described earlier. They were then used
to compute the values in the REN column using equation (5.4). The Step column indicates

the incremental departures from REN, reaching the values in URN at step 100.
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The ordinary least squares routines in SHAZAM, Version 8 (White, 1978) were used for
the estimation, based on a one-step efficient nonlinear estimation algorithm. Elements of
the vector, p, were generated from a pseudo-random Normal distribution with mean zero
and o, = 0.02 using the IMSL subroutine DRNNOA. The empirical risk functions for each

estimator were then computed. These functions are plotted in Figure 5.1.

Figure 5.1: Comparison of Risk Functions, URN, REN, JSN and PJSN
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As the earlier analytical results indicate, we see the REN estimator dominate all others for
values of & close to zero. REN still dominates all estimators at the “economically meaningful”
values associated with column 3 of Table 5.1, but deteriorates and is dominated by the
PJSN estimator shortly thereafter. Clearly, for the range of parameter values implicit in
this simulation, both JSN and PJSN dominate URN by a significant margin, and PJSN
dominates REN for a range of parameter values which are economically meaningful.

An extension of these simulation results would be to consider the possibility of computing
confidence intervals for the shrinkage estimators along the lines suggested in Kazimi and
Brownstone (1999). This topic will be the subject of future research.

6. Concluding Remarks

For a general nonlinear regression model, we have considered various estimation strategies
based on preliminary test and Stein-type estimation. It is concluded that the positive-part
shrinkage estimator dominates the usual shrinkage estimator. At any rate, both shrinkage
estimators perform well relative to the usual unrestricted nonlinear least squares estimator
of the parameter vector in the entire parameter space. In contrast, the performance of the
estimator based on a preliminary test rule lacks this property. The restricted nonlinear least
squares estimator depends heavily on the quality of the NSI. The ADR of the restricted
nonlinear least squares estimator is unbounded when the parameter moves far from the

subspace of the restriction while BP provides good control on the magnitude of the ADR. It is
exceedingly important to note that the shrinkage estimators have the smallest possible risk in
most cases, as compared to other estimators except when the NSI is nearly correct. Further,
the application of shrinkage estimators are subject to condition that p > 3. Therefore, we

~P
recommend the use of 3 when p < 3. Finally, when p > 3, from the point of robust
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performance, use of all the estimators may be advocated leaning towards the positive part

shrinkage estimator.
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