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Abstract

This article considers the estimation of the dose for a given mortality rate in a logit model
when additional information on that dose is available in the form of a realistic conjecture,
perhaps based on previous experience with the drug being tested, or a drug with similar
properties. Three classes of point estimation, namely, the unrestricted estimator, the shrink-
age estimator and the shrinkage preliminary test estimator are proposed. The asymptotic
bias and mean squared errors are derived for each estimator, and are compared. The rela-
tive dominance relationship of the estimators is also presented. Interestingly, the proposed
shrinkage preliminary test estimator dominates the unrestricted estimator in a range that
is wider than that of the usual preliminary test estimator. The results of a simulation ex-
periment indicate that the shrinkage preliminary test estimator yields superior performance
over an important range of the parameter space, insofar as applied implementation of the

procedure is concerned.

Key Words and Phrases: ED;q,, shrinkage estimator; shrinkage preliminary test esti-

mator; asymplotic biases and risks; asymptotic efficiency.



1 Introduction

In many situations there is a need to estimate ED;q, values, which are doses which
correspond, under a given model, to 100p% mortality. For example EDs is the dose corre-
sponding to 50% mortality, a commonly used summary of a fitted model in quantal assay.
For notational convenience, EDqqg, will be denoted by p,,. Here, ¢ indexes the proportion
associated with the ¢’th dose level.

In the present investigation, we propose large-sample estimation methods for the dose for
a given mortality (u,) in a logit model, incorporating the uncertain prior information (UPI)
that u,, = p,,, which may be available to the experimenter. Finite sample studies on this
subject have been carried out by Hamilton (1979) and Hoekstra (1991), amongst others.

Our main interest here is in estimating p,, when it is suspected a priori that p,, =y, , in
the form of the null hypothesis, H, : u,, = p1,,. The intent is to use this UPI to increase the
efficiency of estimators by performing a preliminary test on the null hypothesis. This natural
origin, , , could be any type of prior knowledge about f,,. In many applied problems, the
experimenter has some guessed value of the parameter of interest, based on past experience
from previous experiments.

As indicatated above, suppose that the population proportion of “successes” (cures, in
terms of the efficacy of a drug, or deaths in terms of the susceptibility of organisms) for a
given dosage is p;. Suppose also that one samples from this population at the given dose

level, and observes P; successes, when drawing n; independent trials. Then

where the u; are independently distributed, each with the binomial distribution with mean
zero and variance p;(1 — p;)/n;.

In studies of this kind, it is common to suppose that p; is governed by the logistic
distribution function,

pi = [1+exp—(v+ Buy, )] ™" (1.2)

Thus, (1.1) and (1.2) can be used to obtain the odds ratio of success versus failure,

P; pi ( L+ ui/pi ) (1.3)

1_Pi:1_pi 1—ui/[1—pi]

or, the logarithm of the odds ratio of success versus failure,

In (1 fipi) —1In (1 f“'pi) [l 4 wi/pi] = [l = wi/(1 = po)] (1.4)

Zellner and Lee (1965) motivate the estimation of such a model by first taking a Taylor series

approximation to the last two terms, retaining linear terms and denoting the remainder, R;,

yielding the following relationship

" <1 iDZ'PZ») = (1 iipz) + [wi/p] + [ws/ (1 = pi)] + Ri

(1.5)
= v+ Bpp, + {ui/(pi[1 — pi])} + Ri



Given the relationship, (1.2), and assuming that 3 is bounded away from from 0 with
probability one, the logit of p;, logit(p;) = In[p;/(1 — p;)], can be expressed in terms of v, 3

and p,,, as follows

Pi
L —=pi

v + By, = logit(p;) = In ( ) , 0<p <l (1.6)

Solving for p,,, yields an expression for the effective dose with mortality rate, p;,

el )

Now, suppose that (v,3) can be consistently estimated using the maximum likelihood es-

timator (MLFE), (’},B) Then, the MLE of u,, can be obtained by replacing (v, ) in (1.7)

with (’?,B) yielding
R 1 Pi ) }

A frequently used value of p; = 0.5, which we will denote simply as p in what follows.

Then, we denote p,, simply as p,, and this represents the median effective dose. This dose
is commonly called ED50, or LC50. In this case y, = v/ and its MLE is thus ji, = fAy/B
In general, as indicated above, 0 < p; < 1. Thus the discussion which follows regarding esti-
mation can be applied to any level of dosage yielding p; mortality without loss of genarality.
This is because the random vector on which fi,, for p; # 0.50 depends is simply (¥, B)

The estimated dispersion matrix for (%, B)’ is

$_ (?11 ?12)7 (1.9)
021 022

where 617 denotes the estimated variance of 4 and &5, denotes the estimated variance of B
The off diagonal elements of 3 represent the estimated covariance between 4 and B The
elements of 3 are used below to compute an estimator of Vfip)-

Suppose now that the UPI regarding p, is available, and that p, = p,, . It is then
reasonable to move the MLFE of u, close to p,,. This information can be used in various

ways in constructing new and improved estimators of p,. First, we propose a shrinkage

estimator (SE) of p, by combining sample and non-sample information as follows

5 = ity + (1= m)jy. (1.10)

One might consider 7 (0 < 7 < 1) and (1 — 7) as two weighted constants, reflecting the
prior relative confidence with which p,, and fi, respectively are viewed. Thus, the choice of
iy, may be based on the experimenter’s prior knowledge, and the choice of 7 represents the
degree of trust the experimenter has in p, . Genrally speaking, the SE gives a smaller mean
squared error at and near the origin, at the expense of poorer performance for large values of

|ty — tp, |- In an effort to avoid this undesirable feature of SF, and to increase the efficiency of
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estimators when the prior information is rather uncertain, it may be profitable to construct
a shrinkage preliminary test estimator (SPTFE), denoted by [Lgp. In this case, the estimator
ft, or [Lg is selected according to whether H, : p, = p,, is rejected or not. On the other
hand, the usual preliminary test estimator (Bancroft (1944)) chooses the MLE, i, or i,
based on the outcome of the preliminary test. However, the usefulness of estimators based
on the usual preliminary test principle (in terms of reductions in mean squared error) is
limited depending on the size of the preliminary test. We show that the proposed estimation
strategies significantly improve upon the performance of the usual preliminary test estimator
for a given test size, in terms of mean squared error.

The remainder of the paper is structured as follows. In Section 2, we describe a series
of estimation strategies for p,. Section 3 details the asymptotic performance of the various
estimators, in terms of asymptotic bias and mean squared error. In Section 4, we compare
the performance of the estimators based on their asymptotic mean squared errors. Section
5 outlines the asymptotic relative efficiency properties of the competing estimators. Section
6 provides analysis of various aspects of this type of estimation environment in terms of a

series of simulation experiments. Section 7 summarises and conculdes.

2 Proposed Estimation Strategies

While SE depends on m, which in turn reflects the degree of confidence one has in the
UPI, SF does not depend directly on any test statistic one might construct with respect to
the null hypothesis, H, : i, = pp,. This is in contrast to the SPTFE, defined in (1.10) above,
which depends not only on such a test statistic but also on 7. In addition, of course, the
usual preliminary test estimator (PTFE), depends on a test statistic of H,, and the significance
level of the test. Thus, in order to define PTFE and a shrinkage preliminary test estimator
(SPTE), one must first define an appropriate test statistic of H,, embodying the UPI.

Since fi, = 4/f, an estimator of Vlfip] can be obtained using the elements of 3. In
particular, taking a first-order Taylor series approximation to fAy/B around g, and ignoring
higher-order terms yields

i oy, 04/8) 0[5/ ]

=R o+ et =+ =2 (3-8} (2.1)
g8 T 9B s
Thus, V[fi,] can be consistently estimated using the estimator, V[ﬂp], defined as follows,
N R 1 . o o
V[/,Lp] = 0‘2 — éQ (0'11 + 2/,Lp0'12 + ILL;O'QQ) (22)

/

which is the variance of the approximation on the right hand side of equation (2.1). Goedhart
(1986) has demonstrated that the limiting distribution of v/n (f, — ;) 4 N (0, o?), where
£ means convergence in law (distribution) and o2 = (1/3%)(o11 + 21,012 + ILLZO-QQ).

In light of the foregoing, we propose the following test statistic for the preliminary test
of H,

. 2
D, = {\/E(MPA_ F‘po)} : 52

1. . v9a
5 = BZ (0'11 —|— QMpO-IZ —|— ,upO'QQ). (23)
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Given the asymptotic distribution of f,, D, A x2[1].
For a given level of significance, o (such that 0 < o < 1), let d, = d,,, be the upper
100a% critical value using the distribution of D, under H,. Then, the SPTE, /lgp, of 1,

can be constructed as follows,
fn” = A1 = )ity + wpp Y (D < do) + fip (D 2> da), (2.4)

where [(A) is the indicator function of set A. For 7 = 1 in the above relation, we obtain the
usual PTFE
BE = iy, (D < da) + i1 (Dn > ), (2.5)

Thus ,EL;: is a special case of ILAL;?P. It is important to note, however, that estimators based on
a preliminary test rule do not uniformly outclass fi,. More importantly, on the other hand,
they do possess a bounded mean squared error (MSE) which is substantially smaller than
the MSE of [1, in a reigon at and near the null hypothesis. On the other hand, [Lg has an
unbounded MSE.

It is also of interest to note that the statistic, D,,, is consistent against any fixed alterna-
tive, pt, = ptp,. In this case, and for large n, ,LAL;P, [Lf and fi, are all asymptotically equivalent.
Consequently, we should specify a more interesting sequence of local alternatives to avoid
such asymptotic degeneracy. Furthermore, Ahmed(1997), among others, has pointed out
that estimators based on a preliminary test principle possess substantially smaller MSFE
than that of fi, in a shrinkage neighborhood of the UPI in the parameter space. For this

reason, a sequence, { K, }, of local alternatives defined as follows is considered:

. )
Kot pp, = fip, + \/—ﬁ (2.6)

where § is a fixed real number.

3 Asymptotic Results

To study the asymptotic properties of the proposed estimators, the following lemma is
useful.

Lemma 3.1:  Under the local alternatives in (2.6)
Lo /lfiy = iy = N(8,0%),  where 0% = (1/8%)(011 + 241,012 + j1,022)

2. The test statistic D, in (2.3) has an asymptotically noncentral chi-square distribution
with 1 degree of freedom and noncentrality parameter, A = (u, — p,,)*/0?. Also,
dno — X2[1] as n — oo. Thus, the critical value d, , of D, may be approximated
by x2[1], the upper 100a% critical value of the central chi-square distribution with 1

degree of freedom.

Under the local alternatives, (2.6), and by virtue of Lemma 3.1, can derive expressions
for the asymptotic bias (AB) of the estimators discussed above. Theorem 3.1 below states
the AB of each of [, ﬂg, ,EL;?P and ,EL;;.



Theorem 3.1:

ABiy) = lim B{v/a(jy — i)} =0 (3.1)

AB(jiy) = lim E{/n(f; — pp,)} = 78, 8= pp — pp, (3.2)
AB(ji;") = lim E{v/n(fi;" — pp,)} = 76 Hs(x] 1; A) (3.3)
AB(ji, ) = lim E{V/n(ji; — p1,)} = §Ha(x] 23 D) (3.4)

where H,(.; A) is the cumulative distribution of a noncentral chi-square distribution with v
degrees of freedom and noncentrality parameter, A.

It can be seem from Theorem 3.1 that AB(,EL;P) < AB(IELE), since m € (0,1], and we
conclude that ,EL;P has less asymptotic bias than /fcgp, depending upon the value of m. The
AB(j5F) and AB([i]') are zero when A = 0, increase to maxima, then decrease towards zero
as A increases. Figure 1 illustrates the behaviour of the AB functions for fi, (where 7 = 0),

fi57 (with 7 = 0.5) and 2" (which is equivalent to 5" with = = 1).

Figure 1: Plots of Asymptotic Biases.
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Asymptotic Bias

It is thus evident from Figure 1 that the AB function of /:LZ]; rises more quickly than that of
/lgp, and reaches a higher maximum. Furthermore, as A rises, /lgp approaches zero more
quickly than ,EL;;. This is also indicated by the fact that the standard deviation of AB(,EL?P)
as a function of A is approximately half that of the standard deviation of AB(/E;:).

Since bias, in general, is part of MSE, and control of MSE will control both bias and
variance, we shall focus from this point onwards on MSE. Furthermore, as the analysis is
being conducted in an asymptotic framework, we will define and discuss asymptotic mean
squared error (AMSE).

Under the local alternatives (2.6) and by virtue of Lemma 3.1, we provide the expressions
for the AMSE of the estimators under study in the following theorem.

Theorem 3.2:  The AMSE for fi,, i5, 157 and i are as specified in equations (3.4)—(3.7)
below, respectively:

AMSE(j1,) = o* (3.4)
AMSE(,EL?) = o*(1 — 7)* + o Ar? (3.5)
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AMSE(ji;") =0® — o*n(2 = m) Hs(x3[1]; A) +
o*A2m Hs(xG[1]; A) — m(2 — 7)) Hs(x;[1]; A) -
AMSE(ji)) =0 — o H3(x3[1]; A) +
o*A2H3(xG[1]; A) — Hs(x3[1]; A)}-

(3.6)

(3.7)

Proof: The foregoing expressions for AMSE(/i5) and AMSE([i’) can be obtained using
analogous manipulations to those presented in Appendix B of Judge and Bock (1978).

4 Comparisons of AMSFE for ﬂp,ﬂg,,&gp and ,ch

4.1 Comparing the MLE (fi,) with the SE (/lg)

Theorem 3.2 indicates that the AMSE of ji, is constant for all A, while the AMSE of ,Ecg
is a straight line emanating from the point o?(1 — )%, with a slope of o*x%. AMSE(ji,) is
intersected by AMSE(j/if) when A = (2 — «)/m. Thus, AMSE(}i7) is less than AMSE(fi,)
when A € [0,(2 — 7)/7). Hence, for A at and close to zero, ,Ecg performs better than /i, in
terms of AMSE. Alternatively, as A deviates from the origin, AMSE([L?) increases without
bound. Thus, departures from the restriction, p, = p,, is fatal to [Lg but is of no concern to

ftp. That is, f1, has constant AMSE for all A.
4.2 Comparing the MLE (fi,) with the SPTE (ji3")

Turning to a consideration of AMSE performances of i, and /lgp, it is clear that for
A equal to or close to zero, AMSE([L?P) is less than AMSE(fi,). As a, the level of sta-
tistical significance associated with a test of Hy : p, = p,,, approaches one, AMSE(/)?P)
tends to AMSE(fi,). Also, when A increases and tends to infinity, AMSE(/lgP) approaches
AMSE(j1,). More generally, as A rises (given «), the value of AMSE(ji5”) increases, crosses
AMSE(fi,,), reaches a maximum, and then monotonically decreases, approaching AMSFE(/i,)
as A — oo. Figure 2 shows the behaviour of the AMSE functions for three values of
a = {0.05,0.10,0.50}, given # = 0.5. For convenience, and without loss of generality, Figure

2 is drawn with o2 normalised at unity.

Figure 2: Plot of AMSE for MLE and SPTE, Various Significance Levels.
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4.3 Comparing the MLE (fi,) with the PTE (ﬂf}

By manipulation of (3.7) it can be shown that, as o — 0, AMSE([L?) will be less than
AMSE(j1,), so long as 0 < A < 1. In particular, we know that AMSE(j,) = o* from
equation (3.4). Setting this equal to (3.7) and solving for A (A;4) at which this equality
holds yields

A= (2H : Hs(xa[1]; A) ) (4.1)
s(XA[1]; A) = Hs(X2[1]; A)

Then, as a — 0, H3(x2[1]; A) — 1 and Hs(x2[1];A) — 1, so that lim,_0 Ay 4 = 1. However,
for o > 0, A4 < 1. Also, since AMSE([i5) cuts AMSE(ji,) at (2 — x)/m > 1, the range
of A for which AMSE(iF) is less than AMSE(fi,) is less than the range of A for which
AMSE(i3) is less than AMSE(fi,). Figure 3 shows the behaviour of AMSE(jil) functions
for three values of a = {0.05,0.10,0.50}, for # = 0.5. Again, as with Figure 2, Figure 3
is drawn with ¢* normalised at unity. In Figure 3, it can be seen that AMSE(/)?) attains
higher values at its maxima for given values of a than AMSE([L?P). This will be discussed
in more detail in the next Sub-section.

Figure 3: Plot of AMSE for MLE and PTE, Various Significance Levels.
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4.4 Comparing the SPTE (ji5” ) with the PTE (jil’)

Equations (3.4) and (3.6) can be used to determine the range of values of A for which
AMSE((i5F) is less than AMSE(ji,) in the same way as Ay 4 was identified earlier. This
range of A can then be compared with A € [0, Ay 4]. Using (3.4) and (3.6), we solve for A
(Ay3) at which AMSE(fi,) = AMSE(i5F),

2—m T Hy(x2[1]; A

ALB:( )( __nhGlld) ) 2)
m 2H3(on[1]7 A) - (2 - T)H5(on[1]7 A)

Again, as a — 0, Ha(x2[1]; A) — 1 and Hs(x2[1]; A) — 1, so that lim,0 A1 3= (2 —7)/7.

However, for o > 0, Ay 3 > (2 — m)/m, since the expression in the second parentheses on the

right hand side of (4.2),

WHS(Xi[l]; A)
(2H3(x3[1]; A) = (2 = m)Hs(x2[1]; A)) (4.3)
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is greater than one. This can be seen by taking limits of the numerator and denominator of
(4.3) as m — 0. The further implication of this last point is that, for o # 0, A € [0, Ay 3] is
wider than A € [0, (2 — m)/m], the range of A for which AMSE(jiS) < AMSE(ji,). Figure 4
below shows the plots of AMSE(ji57) (for m = 0.5) and AMSE(ji]') at o = 0.05.
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Figure 4: Plot of AMSE for SPTE and PTE, Significance Level, 0.05.
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4.5  Comparing AMSE Functions for All Estimators

30

A useful summary of the foregoing discussion can be provided by plotting representative

AMSE functions for each of the estimators, fi,, [Lg, ,EL;P and ,EL;;. This is presented in Figure

5, for m = 0.5 where applicable, and a = 0.05.
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Figure 5: Plot of AMSE, All Estimators.
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The discussion of the preceding Sub-sections and the plots of the AMSE functions in

Figure 5 above permits a more formal statement of the relative dominance characteristics of
the various estimators. Recall that when A € [0, A 3], we have AMSE([L?P) < AMSFE(ji,),
which is a wider interval than A € [0, Ay 4]. Thus, ,&gp provides a wider range of A than ,[Lf,

the usual PTEFE, for which ﬂgp dominates f1,. This indicates the superiority of ﬂgp over /fL]];.
Furthermore, equations (3.6) and (3.7) indicate that AMSE(fl) — AMSE(ji5") is given by

o A{2( 1 = m)Hs(E[1A) = (1= 7)2Hs ([ A) } — 02 (1 — 7)2Hs (3 [1]; A).

(4.4)



The magnitude of (4.4) can be positive or negative, depending on the magnitude of A. That
is, for A in a neighbourhood of zero, (4.4) is negative, since —o*(1—7)?Hz(x2[1]; A) < 0, and
a?A{2( 1 —m)Ha(xA[1]; A) — (1 — m)*Hs(x2[1]; A)} is positive but negligible, especially for
larger values of m. Thus, when the former term is larger in absolute value than the latter,
AMSE(iF) < AMSE(5F). For such small values of A, 4 dominates /io”. However, as
A rises, the difference AMSE(jil') — AMSE((i"') becomes positive, so that 4! is dominated
uniformly by ﬂgp for such larger values of A, in the rest of the parameter space.

More formally, suppose A, is a point in the parameter space at which the AMSE(/lgP) =
AMSE(,EL;;) for a given value of m. Then, for A € [0,A,], ,ELZI; performs better than ,EL;?P,
while for A € (A, 00), ,EL;?P dominates [Lg uniformly. Further, for larger values of 7 (close
to unity), the interval [0, A;] may be not noticeable. Nevertheless, ,EL;P and ﬂg share the

common asymptotic property that their AMSFE converge to a common limit, AMSE(j1,) = o?,

as A — oo,
Figures 2 and 3 above also indicate the inherent variability of AMSE(ji5") and AMSE(jil’)
(at m = 0.5), as functions of a. Each of the functions exhibits increasing variability as

o falls. In addition, for a given a (again conditional on 7 = 0.5), AMSE(ji]') exhibits
greater variability than AMSE(fi>”). The standard deviation of AMSE(fi5") is half that of
AMSE(iE).

We conclude this section with the following proposition, which suggests that relative

percentage itmprovement (PI) statistics can be computed for each of the estimators in terms

of their AMSE, relative to the AMSE(fi,).

Proposition 4.1: None of the four estimators is inadmissible with respect to the other

three. However, at A = 0, the estimators may be ordered according to the magnitude of

their AMSE as follows:
I S A (4.5)
where > denotes domination.
To appraise the estimators at A = 0, we compute the Pl in AMSE as follows:

o 100(AMSE(i,) — AMSE(s,)
e AMSE(i,)

i=S, 5P, P (4.6)

Table 1 below gives these Pl at A = 0. Table 1 compares Pl;s to Plise at three values of
m when A = 0, in the first three columns of the Table. The values of P]ﬂgp are conditional
on a = 0.05. As one would expect, the Pl increase as 7 rises (meaning greater weight being
placed on the restriction that p, = u,,). This being true, of course, in light of the restriction
being true, since A = (0. The second series of three columns in Table 1 compare P]ﬂgp to
Plip at m = 0.5, for three values of a. Clearly, Plp is higher than Plysp, since p, = iy,
holds. However, for both types of comparison in Table 1, the superiority of /fcg and ,EL;; over
/lgp is small enough to justify the use of /fcgp, given its dominance characteristics when A

deviates from zero.



Table 1: Percentage Improvements

(PI) Over fi, at A =0

a = 0.05 7 = 0.50
s P]ﬂg P]ﬂgP (0% P]ﬂgP P]ﬂg
% % % %

0.25 43.75 31.54 0.05 54.07 72.09
0.50 75.00 54.07 0.10 42.05 56.07
0.75 93.75 67.59 0.25 20.73 27.64

In general, whether p, = p,, 1s not known. Also, AMSE([L?P) and Plyse depend on a,
which must be determined by the researcher. One method to determine « is to compute the
minimum guaranteed efficiency of ,Ecgp. To do so, we turn to a consideration of asymptotic

relative efficiency, which is defined and discussed in the following section.

5 Asymptotic Efficiency Analysis

The asymplotic relative efficiency, ARF, of an estimator is defined relative to AMSE(f1,),

as follows

_ AMSE(i,)

AREL) = rsm i)

i=S, 5P, P (5.1)

JFrom this definition, it is evident that ARFE greater than unity signifies improvement
of the estimator in question over fi,. Section 4 indicates that /lgp is a preferred estimator
in many situations, relative to ,Ecg and /fcg. Thus, in what follows, we confine attention to
ARE(IELP‘?P), which is a function of (e, 7, A). For any o # 0, ARE(,ELZ‘?P) has its maximum,
(E*), at A = 0. Using equations (3.4) and (3.6), we can solve for £* as follows

E*={1 — (2 —m)mHa(x2[1];0)} "

(5.2)
={1 - (1= (1 =7))Hs(x2[1;0)}7", (= 1)

For fixed values of o and 7, ARE(,EL]‘?P) decreases as A increases from zero, crossing the line
ARFE(fi,) = AMSE(f1,)] AMSE(fi,) = 1 at Ay 3 (the A consistent with solution of equation
(4.2)), attains a minimum value at a point, A,, then increases and asymptotically approaches
ARE(i,) = 1.

It can also be noted that, for fixed # maximum efficiency, £*, is a decreasing function
of . Minimum efficiency, E,, is an increasing function of «, however. These features of

ARE(j57) are illustrated in Figure 6, which plots ARE(i5") for oo = (0.05, 0.10, 0.25), at
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m = 0.50. It is also the case that, the smaller the value of «, the greater is the variability

in ARE(ji5F). The standard deviation of ARE(f57) falls from 0.26 at o = 0.05, to 0.09 at
a = 0.25.

Figure 6: Plots of ARE of SPTE, Various Significance Levels.
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On the other hand, for any fixed value of «a, the maximum efficiency of ARE(/)?P), E* is
an increasing function of m, while the minimum efficiency of ARE(,&;P), E,, is a decreasing
function of 7. These features of ARE(fi5") are illustrated in Figure 7, which plots ARE(j157)
for m = (0.25, 0.50, 0.90), at o = 0.05. In this case, the larger the value of m, the smaller

is the variability in ARE(/i5F). The standard deviation of ARE(ji57) rises from 0.13 at
m = 0.25, to 0.43 at m = 0.90.

Figure 7: Plots of ARE of SPTE, Various Values of pi.
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In an effort to help the researcher in choosing an estimator with maximum ARFE, we
adopt the following procedure. If A < (2 —m)/m, then /fcg is chosen because the performance
of /fcg is superior in this range. Since, however, A and 7 are generally unknown, there is no

way of choosing a uniformly best estimator. We therefore recommend following a two step

procedure for selecting the size of the preliminary test:

Step 1. Suppose the experimenter does not know the size of the test, but knows m = 7,
and wishes to choose an estimator, /lgp, which has ARF not less than F,. Then the max-min

principle determines @ = o* such that ARE(,EL?P[Q*,WO,AO]) = FK,. Therefore, a user who
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wishes to find a good alternative to ,Ecg and fi, should be able to specify the minimum ARFE
(E,) to achieve this goal.

Step 2. Suppose the experimenter does not know the value of a or m, and wants to use the
ﬂgp which has ARFE no less than F,. Then, among the set of estimators with o € Z, where
Z=Aa: ARE(/:L;P) > FE, for all A and 7}, the estimator, ,Ecgp, is chosen to maximize the
ARE(/)?P) over all @ € Z and all A, 7. That is to say, we solve the following equation for a:

: ~ASP[ % / _
max {mAmARE(,up [, 7, A,]) = E,}, forall 7. (5.3)

The solution, a*, is the optimum level of significance.
Suppose, m € I', where
I'={r:7=0(0.1)1} (5.4)

and the experimenter does not know the value of 7 but is willing to use an estimator with
relative efficiency no less than F,. Then o = o* can be found as described above, and the
value of 7 can then also be determined.

As a result of the procedures in Step 1 and Step 2, a researcher can select an estimator,

,Ecgp, with ARE(,LAL;P) > 1. An example serves to illustrate the use of the procedure.

Example: If 7 = 0.4 and the researcher wishes to select an estimator, /fcgp, with a
minimum ARFE of at least 0.60, then the recommended a* = 0.10. This choice of a* yields
an estimator with a maximum ARFE of 1.560. On the other hand, if the researcher wishes
to rely on the UPI completely and uses m = 1, then the size of the preliminary test will be
approximately 0.30. Also, the maximum A RE drops from 1.560 to 1.277.

The above example serves to illustrate the inherent usefulness of /lgp over /lf. That is,
for relatively larger values of A, the ARFE of /fL]]; will be smaller than that of ,EL;?P for a given
significance level. This can be inferred from the comparison of AMSE(ji5") and AMSE([i])
in Figure 4, which is the underlying factor driving the performance of ARFE in general. A
table giving £* and FE, fo a range of values of o and 7 is available from the authors in an

appendix.

6 Simulation Experiments

In this section, we utilise the theoretical methodology of the preceding sections to de-
termine the practical performance of the /lgp and /:L:f, relative to fi, in a simulated setting.
This setting is intended to replicate the circumstances an applied researcher is likely to face
in the estimation of EDsg.

The baseline for the simulations conducted was the MLF simulation experiment design
in Hamilton (1979). In that design, it is supposed that p; follows the logistic distribution,
as indicated in (1.2). In this context, u,, is regarded as a dosage level, and is denoted as z;
in Hamilton (1979), who considers ten “dosage levels”, u,, = =; = {1,2,3,4,5,6,7,8,9,10}.

Given these design values for pu,,, the mean value around which these are distributed is

12



Table 2: Dose Levels, p,, = z;,
and Probabilities of Response, p(x;).

Dose Probability Hamilton (1979)
T p(z:) p(zi)
z; = 1.0 0.0001233946 0.00026
x; = 2.0 0.0009110512 0.00160
z; = 3.0 0.0066928510 0.01000
x; = 4.0 0.0474258700 0.05969
x; = 5.0 0.2689414000 0.28516
x; = 5.5 0.50 0.50
z; = 6.0 0.7310586000 0.71484
x; =17.0 0.9525741000 0.94031
z; = 8.0 0.9933071000 0.99000
x; = 9.0 0.9990889000 0.99840
z; = 10.0 0.9998766000 0.99974

tpo = D.5. Table 4, column I, of Hamilton (1979) indicates the p;, which we can also
denote as p(z;), for consistency with his notation. These probabilities are reproduced in

Table 2. Using p(x;) in Table 2, it is possible to solve for v and 3, the parameters of the

logistic distribution on which (1.2) is to be based for the simulations. This yields values of
~ = —10.088917, and 3 = 1.8343476. For convenience in the simulation experiments in this
paper, we therefore set v = —11.0, and 3 = 2.0. Thus, p,, = —(v/8) = 5.50, as is required
for the EDs5q dosage level. The second column in Table 2 thus indicates the p(z;) which are
to be used in a series of four simulation experiments, and it can be seen that these are close
to Hamilton’s (1979) values for p(z;).

Including the value for p,, = 5.5, and the ten values in z; = {1,...,10}, yields a total
of eleven “observations” or dosage levels for one of the simulation experiments. Clearly,
since one has to estimate v and 3 in order to estimate p,,, estimation based on such a
régime would yield 11-2 = 9 degrees of freedom. Thus, estimators of v and [ would be
subject to small-sample imprecision. In order to determine the effect of this on estimation
of EDsg, we therefore conduct three other experiments based on this initial design. These
additional experiments specify a finer grid for z;, yielding 21, 50 and 105 dosage levels on
these increasingly finer grids. Given the values for v = —11.0 and g = 2.0, the various
p(z;) can be obtained for subsequent generation of the required data for the simulation
experiments. A full summary of z; and p(z;) for these additional experiments is available
from the authors in an appendix.

To construct the data required for the simulation experiments, first F; denoted in equa-
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tion (1.1) must be generated. The p,, for each z;, and the respective experiments were
therefore used to generate P;, where P; is the sample proportion of successes from a binomial
distribution with population proportion of success of p,,, from n; independent trials. The
IMSL subroutine RNBIN was used to generate these success rates, based on n; = 500,000
at each p,,. This ensured that, even for relatively small values of p,,, the success rate was
non-zero. Thus, sample proportions could always be calculated. A total of 5,000 replicates
were generated for each experiment (sample sizes of N = {11,21,50,105}. In what follows,
samples will be denoted N;,7 = 1,...,4. In addition, these 5,000 replicates were repeated
100 times, to yield a total of 500,000 samples. Thus, the performance of ,LAL;P and ,ELZI; rela-
tive to f1, could be compared as A deviated from zero, at up to ninety-nine additional data
points, based on 5,000 replicates each.

Having obtained F;, u; for equation (1.5) can be obtained as P; — p,,. To complete
data generation, R; for equation (1.5) was generated as R; ~ (0,0%), where 0% = 0.25.
The IMSL subroutine DRNNOA was used for this purpose. Given z;, u;, R;,y and 3, the
left-hand side of (1.5), the sample logil(F;), can be calculated, from which one can then
estimate v and 3. These estimates were obtained using the generalised least squares (GLS)
routine in SHAZAM, Version 8.0 (White, 1978), adjusted to take account of the inherent
heteroskedasticity in the disturbances of the model, (1.5).

In order to obtain /lgp and /15, the sample counterpart of D,, D, must be computed
for each replication, and compared with d,. To control for possible experimental and small
sample errors, especially when N; = (Ny, N3) = (11,21), the sample critical values of D are
used. As indicated in Lemma 3.1, d,., — x2[1] as n — oo. However, the relatively poor
small sample performance of D can be seen by comparison of sample critical values of D
at the various sample sizes, with the asymptotic critical values given a variety of a levels.

These comparisons are given in Table 3.

The sample critical values are obtained by using the 500,000 sample observations on D for
each of the four simulation experiments with differing sample sizes. The values of D are
sorted from lowest to highest, and the 100a% value obtained from the sorted vectors of D.
It is clear that sample values of d, approach the asymptotically valid values as N; rises.
However, even at Ny, = 105, there is still a substantial difference between the sample and
asymptotic values. This indicates that one should exercise caution in practice in the use of
the asymptotic critical values when computing /ngP or /)5.

The next part of this Section deals with comparisons of the sample MSF functions of /ngP
and ﬂf with fi,. Figure 8 provides such a comparison for Ny = 11, with 7 = 0.5 for /lgp,

and at an « level of 0.05.
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Table 3: Sample and Asymptotic Critical
Values for D and D,, Various a.

@ Sample N;  Sample N, Sample N3 Sample N, Asymptotic

Level Value Value Value Value Value
0.15 7.0488 5.1888 4.5878 4.2945 2.0723
0.10 10.154 7.0539 6.0830 5.6468 2.7055
0.05 17.2416 10.8074 8.9003 8.1403 3.8415
0.01 48.0163 22.9328 16.5186 14.7270 6.6349
0.005  71.6056 29.6674 20.3324 17.9997 7.8795

0.001 173.6875 50.7775 30.8321 26.4770 10.8280

Figure 8: Plot of MSE Functions, MLE, SPTE and PTE, N=11.
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The horizontal axis has as its scale §2, so is not normalised by o%. As expected, the pattern of
the plots of /ngP and /:Lg is what one sees in the analytical results plotted in Figure 4 earlier.
That is, ,ELP‘?P quickly dominates [Lf in terms of MSFE for small departures from §% = 0, and
cuts MSE(fi,) at around § = 0.25. This is large relative to the precision of fi,, which has a
standard error of 0.01 across all 500,000 sample values. Also, for p,, &+ 0.25, the associated
“kill rates” would be 0.622 and 0.378 respectively. Thus, if a researcher intends to identify
EDso with minimum risk, then /lgp provides the most appropriate estimator to use when D

indicates deviations from Hy in this neighbourhood of 4.
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Figure 9: Plot of MSE Functions, MLE, SPTE and PTE, N=21.
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One means by which to improve the performance of ,&gp and ,EL;; is for a researcher to make
use of a larger sample. Figure 9 provides a comparison of ,EL;?P and [Lf to fi, at Ny = 21,
again with 7 = 0.50 and at @ = 0.05. The superior performance of /fegp relative to [Lg
is again evident for small deviations from § = 0. However, it is now relatively more easy
to discriminate quickly with regard to when a departure from H, has occurred. That is,
MSE(i5F) cuts MSE(fi,) at § = 0.15. This translates into associated kill rates for i, +0.15,
of 0.575 and 0.425 respectively. Thus, the degree of imprecision or risk associated with
estimating EDsg is substantially reduced.

As could be expected, the precision in estimation of EDsq can be further improved by
increasing sample sizes still further. Figures 10 and 11 indicate the MSF functions for ,LALP‘?P, /:Lg
and fi, at N3 = 50 and Ny = 105 respectively. However, while increasing the sample size
from N; = 21 to N3 = 50 causes a reduction in the point where MSE(i5F) cuts MSE(ji,)
from & = 0.15 to 6 = 0.08, the further increase of N3 = 50 to Ny = 105 only reduces this
intersection point to § = 0.07. Thus, from a practical point of view for an applied researcher,
the benefit of increasing sample size beyond N3 = 50 in terms of estimator precision will
more than likely be out-weighed by the added cost of additional sampling. Depending on the
nature of the application, this increased cost is likely to be non-trivial, whether in pecuniary,

environmental or human terms.

Figure 10: Plot of MSE Functions, MLE, SPTE and PTE, N=50.
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Figure 11: Plot of MSE Functions, MLE, SPTE and PTE, N=105.
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In Section 5, the notion of ARE was defined, and used to illustrate how an applied
researcher could select optimal values of & and m. We conclude this Section by presenting
results pertaining to the simulated relative efficiency (SRE) of /fcgp, based on the simulation
experiment with N3 = 50 observations. Table 4 contains these results, where the SRF are
computed according to the definition of ARFE specified in (5.1), which was based on AMSE,
rather than simulated mean squared error (SMSFE), on which SRFE is based.

This Table includes SRFE for a series of values of 4, up to the point roughly where
SMSE(/:L?P) cuts SMSFE(fi,). Values of SRE are reported for three values of 7,0.25,0.50
and 0.75; and for three values of «,0.10,0.05 and 0.01. At values of § = 0.08, there is still
substantial improvement in the performance of ,ELP‘?P over fi,, in terms of SMSE, the criterion
on which SRFE is implicitly based. This improvement is the case as an increasing function
of m, and as a decreasing function of 7. In addition, the sample size at N3 = 50 is on the
boundary of what one could reasonably expect to use in applied situations. For smaller
sample sizes, the MSF gains in using /ngP over fi, would accrue over an even greater range
of values for 6. Thus, /lgp provides an extremely useful way in which UPI can be used in

applied settings such as this.

7 Summary and Concluding Remarks

In this paper, three shrinkage estimators are presented, as alternatives to the usual maxi-
mum likelihood estimator MLFE for estimation of mortality rates for a given dosage. Probabil-
ities of mortality are assumed to follow a logistic distribution function, which is a commonly
used model in this literature.

The focus is to obtain alternative estimators of EDsq, the dosage associated with a 50%
mortality rate. The three estimators presented as alternatives to the MLF, ji,, are a shrinkage
estimator based on incorporation of uncertain prior information ( UPI), denoted ﬂg, a typical
pre-test estimator, /15, and a shrinkage preliminary test estimator, /lgp. We show that the
,&gp displays superior performance to the other three estimators for a significant range of
the parameter space. On the basis of simulation experiment results, this range appears to

be substantial, in terms of yielding large reductions in mean squared error. In fact, the
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Table 4: Comparisons of Simulated Relative Efficiencies (SRFE)
of ,[Lgp at m = 0.25, 0.50 and 0.75,

Various Values of a.

SRE at o = 0.10 SRE at o = 0.05 SRE at o = 0.01
) =025 7#=050 7#=0.7 7#=025 7#=050 7#=0.79 7#=025 7#=050 7=0.75

0.00 1.369 1.858 2.366 1.515 2.397 3.683 1.713 3.488 9.227
0.01 1.369 1.848 2.317 1.523 2.410 3.642 1.715 3.464 8.550
0.02 1.347 1.763 2.111 1.506 2.304 3.226 1.739 3.537 8.138
0.03 1.312 1.643 1.852 1.475 2.135 2.692 1.710 3.203 5.498
0.04 1.298 1.576 1.687 1.477 2.074 2411 1.679 2.881 3.920
0.05 1.231 1.388 1.383 1.426 1.844 1.911 1.666 2.646 3.000
0.06 1.180 1.259 1.191 1.345 1.578 1.491 1.618 2.304 2.230
0.07 1.120 1.135 1.037 1.277 1.391 1.241 1.584 2.072 1.807
0.08 1.076 1.045 0.923 1.200 1.214 1.028 1.549 1.848 1.456
0.09 1.026 0.951 0.812 1.141 1.081 0.874 1.473 1.569 1.142
0.10 0.988 0.892 0.754 1.074 0.969 0.768 1.405 1.374 0.954
0.11 0.950 0.837 0.702 1.012 0.874 0.682 1.326 1.196 0.803
0.12  0.922 0.793 0.653 0.970 0.806 0.614 1.243 1.029 0.666
0.13 0.895 0.757 0.621 0.919 0.738 0.555 1.168 0.902 0.569
0.14 0.881 0.743 0.612 0.884 0.701 0.532 1.088 0.801 0.503
0.15 0.880 0.748 0.623 0.864 0.681 0.517 1.054 0.742 0.456

18



smaller the sample sizes used by an applied researcher, the greater the potential gains in
using ,Ecgp. The results of our simulation experiments also indicate several factors which an
applied researcher would wish to take into account in practical situations. In particular, the
results have implications for choice of sample sizes, caution in the use of the asymptotically
valid test statistic used in the construction of ﬂgp and /)5, and the extent to which one can

gain in the use of, say, ,EL;?P, for deviations of p,, from p,.
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Appendix

Table Al: Comparisons of Maximum and Minimum ARE(/)?P),
7 = 0.0(0.1)1.0, and for Various Values of a.

a=0.01
~ 000 0.10 0.20 030 040 050 0.60 0.70 0.80 0.90 1.00
A, 0.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 6.0 6.0 6.0
E, 1.000 0.758 0.590 0.469 0.380 0.313 0.262 0.222 0.190 0.164  0.143
E* 1.000 1.211 1.492 1.876 2.415 3.191 4.330 5.992 8.257 10.678 11.836
a = 0.05
~ 000 0.10 0.20 030 040 050 0.60 0.70 0.80 0.90 1.00
A, 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0
E, 1.000 0.833 0.701 0.596 0.512 0.443 0.387 0.341 0.302 0.269  0.240
E* 1.000 1.159 1.350 1.581 1.857 2.177 2.535 2.907 3.247 3.493  3.583
a=0.10
~ 000 0.10 0.20 030 040 050 0.60 0.70 0.80 0.90 1.00
A, 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
E, 1.000 0.874 0.768 0.678 0.602 0.537 0.481 0.434 0.392 0.356  0.325
E* 1.000 1.119 1.253 1.400 1.560 1.726 1.890 2.042 2.166  2.248  2.276
a=0.15
~ 000 0.10 0.20 030 040 050 0.60 0.70 0.80 0.90 1.00
A, 0.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0
E, 1.000 0.901 0.815 0.739 0.672 0.613 0.561 0.514 0.472 0.434  0.401
E* 1.000 1.092 1.189 1.291 1.395 1.497 1.592 1.674 1.738 1.779 1.794
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Table Al: Comparisons of Maximum and Minimum ARE(IELP‘?P),
m = 0.0(0.1)1.0, and for Various Values of «, continued.
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