
The 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
21-23 September, 2017, Bucharest, Romania

Creation of a Deep Convolutional Auto-Encoder
in Caffe

Volodymyr Turchenko 1,2, Artur Luczak 3
1 NuraLogix Corp., 200-10 King Street E., Toronto, ON, Canada, M5C 1C3, vladturchenko@nuralogix.com

2 Ontario Institute for Studies in Education, University of Toronto, 45 Walmer Rd., Toronto, ON, Canada, M5R 2X2
3 Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge

4401 University Drive, Lethbridge, AB, Canada, T1K 3M4, luczak@uleth.ca

Abstract—The development of a deep (stacked)
convolutional auto-encoder in the Caffe deep learning
framework is presented in this paper. We describe simple
principles which we used to create this model in Caffe. The
proposed model of convolutional auto-encoder does not have
pooling/unpooling layers yet. The results of our
experimental research show comparable accuracy of
dimensionality reduction in comparison with a classic auto-
encoder on the example of MNIST dataset.

Keywords—deep convolutional auto-encoder; machine

learning; neural networks; visualization; dimensionality
reduction

I. INTRODUCTION

The convolutional auto-encoder (CAE) is one of the
most wanted architectures in deep learning research. As an
auto-encoder, it is based on the encoder-decoder
paradigm, where an input is first transformed into a
typically lower-dimensional space (encoder part) and then
expanded to reproduce the initial data (decoder part). It is
trained in unsupervised fashion allowing it to extract
generally useful features from unlabeled data, to detect
and remove input redundancies and to present essential
aspects of analyzing data in robust and discriminative
representations [1]. Auto-encoders and unsupervised
learning methods have been widely used in many
scientific and industrial applications, solving mainly
dimensionality reduction and unsupervised pre-training
tasks. Compared to the architecture of a classic stacked
auto-encoder [2], CAE may be better suited to image
processing tasks because it fully utilizes the properties of
convolutional neural networks, which have been proven to
provide better results on noisy, shifted and corrupted
image data [3]. Theoretical issues of CAE developments
are well described in many research papers [1, 4-6].

Modern deep learning frameworks, i.e. ConvNet2 [7],
Theano+Lasagne [8-9], Torch7 [10], Caffe [11] and
others, have become very popular tools in the deep
learning research community since they provide fast
deployment of state-of-the-art deep learning models along
with appropriate training strategies (Stochastic Gradient
Descent, AdaDelta, etc.) allowing rapid research progress
and emerging commercial applications. Our interest is to

apply deep learning technologies, namely a CAE, for
image processing in the neuroscience field. We have
chosen Caffe deep learning framework mainly for two
reasons: (i) a description of a deep neural network is pretty
straightforward, it is just a text file with the description of
layers and (ii) Caffe has a Matlab wrapper, which is very
convenient and allows getting Caffe results directly into
Matlab workspace for their further processing
(visualization, etc) [12].

There are several existing solutions/attempts to
develop and research a CAE model on different platforms,
but to the best knowledge of the authors there is no current
CAE implementation in Caffe yet. The issue of CAE
implementation is permanently active in the Caffe user
group [13-16]. There are two implementations of one-
layer (not-stacked) CAE [17] and convolutional Restricted
Boltzmann Machine [18] in Matlab. Mike Swarbrick
Jones presented the implementation of CAE in
Theano/Lasagne [19-20]. The Deep Sea team [21], who
won a 100,000 US dollar prize (1st place) in the National
Data Science Bowl, a data science competition where the
goal was to classify images of plankton, has reported the
use of CAE to pre-train only convolutional layers of their
network (also implemented in Theano/Lasagne [9]). But
they did not use this approach in their final winning
architecture since they did not receive any substantial
improvement with CAE pre-training. There are also CAE
implementations: (i) in the examples of the Torch7 deep
learning framework [22], (ii) recently implemented based
on Torch7 [23], (iii) recently implemented on
Theano/Keras [24] and (iv) in the examples of the Neon
deep learning framework [25].

The goal of this paper is to present our first results of
the practical implementation of a CAE model in Caffe
deep learning framework as well as the experimental
research of the proposed model on the example of MNIST
dataset and a simple visualization technique which helped
us to receive these results.

II. CREATION CAE MODEL IN CAFFE

In the examples of Caffe there are two models which
solve the task of dimensionality reduction. The first is a
classic stacked auto-encoder, proposed by Hinton et al [2],

978-1-5386-0697-1/17/$31.00 ©2017 IEEE 651

and the second is a Siamese network, proposed by LeCun
et al [26]. The classic auto-encoder model is well
researched and it trains in a purely unsupervised fashion.
The Siamese network consists of two LeNet [3]
architectures coupled in a Siamese way and ended by a
contrastive loss function. Siamese network trains in a
“semi-supervised” fashion, since for forming the training
set we have to label a couple of input images (chosen
randomly), which we are saving into two channels (left
and right), by 1, if the images belong to the same class and
by 0 otherwise. The visualizations how the example Caffe
implementations of the classic auto-encoder and the
Siamese network solve the dimensionality reduction task
encoding the test set (10000 examples) of MNIST in a 2-
dimensional (2D) space are depicted in Fig. 1 and Fig. 2
respectively.

Figure 1. Visualization of MNIST test set in a 2D space

by classic 2-dimensional auto-encoder

Figure 2. Visualization of MNIST test set in a 2D space

by Siamese network

Following the success of the LeNet [3] architecture

and the paper [1] which showed experimentally that

convolutional+pooling layers provide a better
representation of convolutional filters and, furthermore,
classification results, we started to construct CAE by the
scheme conv1-pool1-conv2-pool2 in the encoder part and
deconv2-unpool2-deconv1-unpool1 in the decoder part.
We also have been inspired by the work of Hyeonwoo
Noh et al [27] and we have used their non-official Caffe
distribution [28], where they have implemented an
unpooling layer, which is still absent in the official Caffe
distribution. This CAE model did not train in our previous
experiments (which are the topic of a separate paper), and,
therefore, we have eliminated pooling-unpooling layers
from our consideration. Masci et al [1] showed that
convolutional architectures without max-pooling layers
give worse results, but architectures without pooling and
appropriate unpooling layers are definitely working
architectures, and it is a good point to start first with some
simpler working architecture and then to increase the
complexity of the model.

After we have eliminated pooling-unpooling layers
and added a non-linear activation function, <Sigmoid> in
our case, after each convolutional and deconvolution layer
[4], we have noticed, that the developed model is very
similar to the classic auto-encoder model [2]. The
difference is, the first two fully-connected layers of the
encoder part have been replaced by two convolutional
layers, and the last two fully-connected layers of the
decoder part have been replaced by two deconvolution
layers. The architecture of the developed CAE model in
Caffe is depicted in Fig. 3. Taking into account some
similarity between the classic auto-encoder and the
developed model of CAE, we have used the following
principles during our research:

1. The model should be symmetric in terms of the
total size of feature maps and the number of
neurons in all hidden layers in both the encoder
and decoder parts. These sizes and numbers
should decrease from layer to layer in the encoder
part and increase in the same way in the decoder
part similarly to a classic auto-encoder. These
sizes and numbers should not be less than some
minimal values allowing handling the size of the
input data from the informational point of view;

2. Similarly to the example of the classic auto-
encoder in Caffe, for the CAE model we have
used two loss functions,
<Sigmoid_Cross_Entropy_Loss> and
<Euclidean_Loss>. Preliminary experimental
research has shown that the use of only one of
these loss functions separately does not provide
good convergence results;

3. Visualization of the values (along with its
numerical representation) of trainable filters,
feature maps and hidden units from layer to layer
allows better understanding of how data are
converted/processed from layer to layer [29];

652

Figure 3. CAE model in Caffe

4. The main purpose of the activation function after
each convolutional/deconvolution layer is non-
linear data processing [4]. Since the nature of
convolutional/deconvolution operations is a
multiplication, our visualization showed the huge
rise of a resulting value of
convolutional/deconvolution operations (the
values of feature maps) in encoder/decoder parts
from layer to layer which prevents the CAE
model from a desirable convergence during
learning. So the use of activation functions, which
drops the resulting value of feature maps to the
interval [0...1] kept the values of feature maps at
the end of the decoder part smaller in order to
provide good convergence of the whole model;

5. The well-known fact is that good generalization
properties of neural networks depend on the ratio
of trainable parameters to the size and dimension
of the input data. Therefore it is necessary to
perform a set of experiments on the existing
model of classic auto-encoder in order to find
better architecture, (i.e. the size of trainable
parameters and appropriate number of neurons in
all hidden layers) which provides better
generalization properties. Then, a CAE with
similar size in terms of the total size of feature
maps and the number of neurons in all hidden
layers could be used to create the CAE model
with good generalization properties. We cannot
compare the classic auto-encoder and the CAE on
the basis of the number of trainable parameters,
because a convolutional network of the same size
has much fewer trainable parameters [3];

6. The created architecture should be stable. Since
different runs of a neural network may show
different learning convergences (values of loss
function) depending on random initialization of
weights/biases, under stable architecture we mean
the same convergence results within several (at
least three) runs of the same model.

The practical implementation of these principles and
some experimental results are presented in the next
section.

III. EXPERIMENTAL RESULTS

All experimental researches were fulfilled on a
workstation operated under Ubuntu 14.04.2 operation
system. The workstation is equipped with 4-core (8
threads visible in Linux) Inter(R) Xeon(R) E5620@2.40
GHz processor, 51 Gb of RAM and GeForce GTS 450
GPU. The GPU has Fermi architecture, 192 CUDA cores,
1 Gb of RAM and computing capability 2.1. The version
of Caffe distributed by Noh et al. [28] was used in the
experiments. The training of all presented models was
performed in GPU mode (solver_mode: GPU), thus one
CPU core + GPU device were utilized by Caffe during the
training.

653

The results of experimental tests of different sizes
(further - architectures) of classic auto-encoder from Caffe
examples are presented in Table I. We were sure that
Hinton et al. presented the best architecture (third row in
Table I) in their Science paper [2], but, as mentioned
above, we wanted to research the generalization properties
of smaller and bigger architectures in order to use this
experience to create our CAE model. The number of
trainable parameters for each architecture is specified in
the first column. Here in Table I and in all next Tables, all
calculations are provided for the case N = 2 dimensions.
The size of the MNIST training dataset we calculated as
60000 examples x 784 elements = 47040 K elements. The
ratio of MNIST size to the number of the training
parameters (w+b) is specified in the second column. We
trained each architecture in three fashions, with 2, 10 and
30 (30 is exactly as in Caffe examples) neurons in the last
hidden layer of the encoder part, which corresponds to 2,
10-, 30-dimensional space of encoding respectively.
According to Hinton et al [2] these architectures are called
2-, 10- and 30-dimensional auto-encoders. We did three
runs for each architecture, the values of both loss
functions, separated by “;” are presented in red for the
training set and in black for the test set. In the last column
we specified the number of classes we evaluated visually
(see Fig. 1) from three runs of each architecture. For
example, the number ‘25’ means that 25 classes from 30
in total (10 classes per three runs) were correctly
classified. Under ‘correctly classified’ we mean that the
color of one class is not mixed with the color of another
class(es), but this is, of course, a subjective sentiment.

We have used t-SNE technique [30] to visualize 10-
and 30- dimensional data, produced by auto-encoder. For
that visualization (it is showed later on the example of
CAE in Fig. 5-6) we have integrated both calls, Caffe and
t-SNE, into one Matlab routine.

The learning parameters of the solver of the classic
auto-encoder (in file solver.prototxt) we left as it is
specified in Caffe examples. These parameters were:
solver_type: SGD (by default), base_lr: 0.01, lr_policy:
"step", gamma: 0.1, stepsize: 1000, momentum: 0.9 and
weight_decay: 0.0005. The results in Table I are specified
for 5000 training iterations. The training time for the
architecture 784-1000-500-250-N-250-500-1000-784
from the third row of Table I was 2 minutes. Table I
shows that the architectures with bigger ratio Data/(w+b),
namely 81/1, 43/1 and 17/1 have better generalization
properties because they provide lower (better) values of
loss functions during the training and testing and better
visualization results.

It is necessary to note, that in the case of the classic
fully-connected auto-encoder researched above, the
number of trainable parameters (except biases) is equal to
the number of connections. But this is not a case of a CAE
since convolutional/deconvolution layers have much
fewer trainable parameters, because the sizes of
convolutional and deconvolution kernels are the trainable

parameters in case of CAE. Therefore, in order to build a
CAE, we have operated with the term “CAE size” which
is the total number of elements in feature maps and the
number of neurons in all hidden layers in the encoder and
decoder parts. In this paper we present two architectures:
(i) Model 1, where we more-or-less adjusted the CAE size
to the best architecture of the classic auto-encoder (third
row in Table I) and (ii) Model 2, where we increased the
CAE size after the series of experimental tests of Model 1.

Table II contains the architecture parameters for both
developed CAE models. In both models we did
convolution with kernels conv1 9x9 and conv2 9x9 in the
encoder part and we came back with deconvolution
kernels deconv2 12x12 and deconv1 17x17 in the decoder
part (Fig. 1). We have chosen this size of deconvolution
kernels in order to restore the same size of MNIST image
28x28. The only difference between the two models is the
number of feature maps in conv/deconv layers and the
number of neurons in fully-connected layers in the
encoder and decoder parts. In the third column of Table II
we can see (bold font) that both proposed models are
practically symmetric in terms of the total number of
elements in feature maps and the number of neurons in all
hidden layers of the encoder and decoder parts.

The number of trainable parameters for both models is
specified in the last column of Table II and in Table III
respectively. Since the deconvolution operation has the
same nature as convolution [31], we have used the same
approach to calculate the number of trainable parameters
both in the encoder and decoder parts. These calculations
can be easily checked by calling Caffe from Matlab using
the command <caffe(‘weights’);>. In decoder part, the
purpose of the deconvolution layer deconv1neur, which
corresponds to the term (1*1w+1b) in the third column of
Table III, is to transform all feature maps of the last
deconvolution layer deconv1 into one restored image with
the same size 28x28 pixels as the original [32]. As we can
see from Tables II and III, the proposed CAE models are
practically symmetric not only in terms of the total
number of elements in feature maps and the number of
neurons in the hidden layers, but also in terms of the
number of trainable parameters in both the encoder and
decoder parts. The comparison with a similarly-sized
classic auto-encoder (3502, third row of Table I) and
Model 1 of the developed CAE (3996, Table II) shows
that the CAE has (2822504/74893 =) 38 times fewer
trainable parameters.

The results of experimental tests of the two developed
CAE models are presented in Table IV, which is
organized similarly to Table I. We evaluate 2-, 10- and
30-dimensional CAEs, the number of dimensions
corresponds to the number of neurons in the last hidden
layer ip2encode (see Fig. 3) of the encoder part. The
results in Table IV are specified for 20000 training
iterations. The comparison of both tables shows that
Model 1 provides the same minimum values of loss
functions as well as the same number of visualization

654

classes as the best architecture of the classic auto-encoder
(3rd row) from Table I. The experimental tests of Model 2
showed better (lower) values of loss functions reached

during the training, and slightly better visualization results
in comparison with Model 1.

TABLE I. RESULTS OF EXPERIMENTAL RESEARCH OF CLASSIC AUTO-ENCODER FROM CAFFE EXAMPLES

Architecture, Number of
trainable parameters (w+b),
Auto-encoder size, elements

Data
/(w+b)

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS;
EUCLIDEAN_LOSS), train / test

Visuali-
zation,
classes N, Dims Run 01 Run 02 Run 03

784-300-150-75-N-
75-150-300-784,

584254,
1052

81/1 2 150.67; 17.40
156.15; 18.12

150.45; 17.40
159.97; 18.85

148.21; 17.02
157.87; 18.15

14

10 110.50; 10.14
113.60; 10.56

108.04; 9.75
112.22; 10.15

113.24; 10.64
116.13; 11.00

22

30 107.03; 9.56
110.76; 10.03

106.44; 9.38
110.25; 9.92

104.26; 9.09
107.64; 9.51

26

784-500-250-125-N-
125-250-500-784,

1098754,
1752

43/1 2 147.55; 16.75
152.79; 17.44

146.48; 16.70
155.13; 17.97

144.91; 16.43
153.05; 17.56

17

10 105.97; 9.39
109.39 ; 9.85

103.69; 8.99
106.32; 9.35

103.59; 9.05
106.45; 9.36

23

30 93.55; 7.34
95.66; 7.51

94.38; 7.45
97.18; 7.76

90.60; 6.82
93.06; 7.08

25

784-1000-500-250-N-
250-500-1000-784,

2822504
3502

17/1 2 142.99; 16.08
152.02; 17.40

143.33; 16.15
152.68; 17.53

147.90; 16.85
151.33; 17.20

21

10 105.68; 9.36
109.05; 9.80

102.25; 8.85
105.16; 9.15

107.80; 9.74
111.04; 10.16

25

30 89.51; 6.64
91.75; 6.87

92.91; 7.23
95.75; 7.53

97.33; 7.94
99.82; 8.20

27

784-2000-1000-500-N-
500-1000-2000-784,

8145004
7002

6/1 2 152.25; 17.54
161.82; 18.98

202.58; 26.01
205.81; 26.44

202.58; 26.01
205.80; 26.44

5

10 130.65; 13.62
136.55; 14.44

139.03; 15.33
148.95; 16.85

201.60; 25.83
204.91; 26.28

12

30 129.13; 13.39
134.96; 14.17

157.92; 18.44
166.55; 19.80

129.75; 13.54
135.23; 14.25

16

784-3000-1500-750-N-
750-1500-3000-784,

15967504
10502

3/1 2 202.64; 26.03
205.80; 26.44

202.64; 26.03
205.80; 26.44

202.64; 26.03
205.80; 26.44

3

10 202.64; 26.03
205.81; 26.44

202.58; 26.03
205.75; 26.43

202.66; 26.03
205.82; 26.44

7

30 200.96; 25.70
204.28; 26.16

202.64; 26.03
205.80; 26.44

202.64; 26.03
205.80; 26.44

15

TABLE II. ARCHITECTURE PARAMETERS OF TWO CAE MODELS

CAE Architecture Size of feature maps and number of
hidden nodes

CAE size,
elements

Number of trainable
parameters (w+b)

Model 1 784-(9x9x4)-(9x9x2)-125-N-
125-(12x12x2)-(17x17x2)-784

(20x20x4)-(12x12x2)-125-N-
125-(12x12x2)-(28x28x2)

3996 74893

1600-288-125-N-125-288-1568
Model 2 784-(9x9x8)-(9x9x4)-250-N-

250-(12x12x4)-(17x17x4)-784
(20x20x8)-(12x12x4)-250-N-

250-(12x12x4)-(28x28x4)
7990 297391

3200-576-250-N-250-576-3136

TABLE III. CALCULATION OF THE NUMBER OF TRAINABLE PARAMETERS IN BOTH ENCODER AND DECODER PARTS

CAE Number of trainable parameters, w(weights)+b(biases), i(inputs), o(outputs)
Encoder part Decoder part Total

Model 1 conv1->((9*9w+1b)*1i*4o)+
conv2->((9*9w+1b)*4i*2o)+

ip1encode->(288i*125o+125b)+
ip2encode->(125i*2o+2b) =

(324w+4b)+(648w+2b)+(36000w+125b)+(250w+2
b) = 37355

ip1decode->(2i*125o+125b)+
deconv2->((12*12w+1b)*125i*2o)+

deconv1->((17*17w+1b)*2i*2o)+
deconv1neur->((1*1w+1b)*2i*1o)+

(250w+125b)+(36000w+2b)+(1156w+2b)+
(2w+1b) = 37538

74893

Model 2 conv1->((9*9w+1b)*1i*8o)+
conv2->((9*9w+1b)*8i*4o)+

ip1encode->(576i*250o+250b)+
ip2encode->(250i*2o+2b) =
(648w+8b)+(2592w+4b)+

(144000w+250b)+(500w+2b) = 148004

ip1decode->(2i*250o+250b)+
deconv2->((12*12w+1b)*250i*4o)+

deconv1->((17*17w+1b)*4i*4o)+
deconv1neur->((1*1w+1b)*4i*1o)+

(500w+250b)+(144000w+4b)+(4624w+4b)+
(4w+1b) = 149387

297391

655

TABLE IV. RESULTS OF EXPERIMENTAL RESEARCH OF DEVELOPED CAE

Architecture,
Number of trainable parameters (w+b),

CAE size

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS;
EUCLIDEAN_LOSS), train / test

Visuali-
zation,
classes N, Dims Run 01 Run 02 Run 03

Model 1,
784-(20x20x4)-(12x12x2)-125-N-

125-(12x12x2)-(28x28x2)-784,
74893,
3996

2 152.68; 17.95
159.47; 18.71

151.83; 17.61
160.10; 18.76

156.65; 18.46
159.76; 18.66

20

10 105.14; 9.33
109.58; 9.88

107.86; 9.72
111.80; 10.24

109.37; 9.91
113.43; 10.39

26

30 94.53; 7.37
98.39; 7.78

96.02; 7.57
98.18; 7.76

93.58; 7.14
96.80; 7.53

26

Model 2,
784-(20x20x8)-(12x12x4)-250-N-

250-(12x12x4)-(28x28x4)-784,
297391,

7990

2 142.50; 15.93
148.74; 16.85

143.50; 16.20
148.33; 16.72

143.16; 16.17
149.68; 16.99

22

10 90.72; 6.93
93.12; 7.15

91.34; 7.04
93.20; 7.19

93.27; 7.35
94.91; 7.42

26

30 71.38; 3.82
72.52; 3.86

70.54; 3.66
71.65; 3.69

71.82; 3.88
73.65; 4.00

26

The visualizations showing how Model 2 solves the

dimensionality reduction task encoding the test set of
MNIST in a 2D space are depicted in Figs. 4-6. Similarly
we have used t-SNE technique [30] to visualize 10- and
30- dimensional data, produced by the 10- and 30-
dimensional CAEs. In both cases, i.e. for the research of
classical auto-encoder and the developed CAE, we have
reformatted the original MNIST dataset into HDF5 format
since this data format is perfectly supported by Matlab.
The learning parameters of the solver of the developed
CAE with stable architecture were: solver_type: SGD,
base_lr: 0.006, lr_policy: "fixed", and weight_decay:
0.0005. We run several experiments, changing the
architecture and learning parameters of CAE, but in many
cases they were not stable architectures. For example, we
tried different initializations of weights and biases
(<weight_filler> and <bias_filler>). The presented results
were provided with the following initialization:
<bias_filler {type: "constant"}> for all layers,
<weight_filler {type: "xavier"}> for
convolutional/deconvolutional layers, <weight_filler
{type: "gaussian" std: 1 sparse: 25}> for fully-connected
(InnerProduct) layers. Also we have tried <ReLU>
activation functions instead of <Sigmoid> and,
surprisingly, we have received worse results.

Figure 4. Visualization of MNIST test set in a 2D space

by 2-dimensional CAE Model 2

Figure 5. Visualization of MNIST test set in a 2D space

by 10-dimensional CAE Model 2 + t-SNE

Figure 6. Visualization of MNIST test set in a 2D space

by 30-dimensional CAE Model 2 + t-SNE

The accepted models and learning parameters are not
unique, we are pretty sure there are a lot of other
configurations, which could provide stable CAE
architectures. The training times for the Model 1 and
Model 2 running for 20000 training iterations were 68 and
100 minutes respectively. For quick reference we have

656

collected all learning parameters of the classic auto-
encoder and the developed CAE in Table V.

TABLE V. LEARNING PARAMETERS OF CLASSIC AUTO-ENCODER
AND DEVELOPED CAE IN CAFFE

 Learning parameters
in file solver.prototxt

Training time

Classic
auto-

encoder

base_lr: 0.01,
lr_policy: "step",

gamma: 0.1
stepsize: 1000,

momentum: 0.9,
weight_decay: 0.0005

Architecture 784-1000-
500-250-N-250-500-1000-

784, 5000 training
iterations
2 minutes

Deve-
loped
CAE

base_lr: 0.006,
lr_policy: "fixed",

weight_decay: 0.0005

Model 1,
20000

training
iterations

Model 2,
20000

training
iterations

68 minutes 100
minutes

As mentioned above, during experimental research

we have visualized the feature maps and the outputs of
the hidden layer neurons in order to understand how data
are processing inside the CAE. The implementation of
such visualization is simple and straightforward thanks to
the Matlab wrapper in Caffe. We just created 15 .prototxt
files corresponding to the number of CAE layers in Fig.
3. After training, and having an appropriate .caffemodel
file, we call Caffe in Matlab using each of those .prototxt
files as an argument. Received values, produced by each
layer were visualized. An example showing how CAE
Model 2 encodes and decodes the digit “2” is depicted in
Fig. 7. The left upper picture is the original image with
28x28 pixels and the right bottom picture with the name
<Deconv1neursig> is the restored image with 28x28
pixels. The title of each picture contains the following
information: the digit we visualized (i.e. “2” - we have
such pictures for 10 example digits from MNIST), the
picture number (i.e. “01”, “02”, etc.), the size of the
appropriate layer how it is internally represented in Caffe
(i.e. “20x20x8”), the name of the appropriate layer
corresponding to the names of the layers from Fig. 3 (i.e.
“Conv1”). We also calculated the minimum and
maximum values for each conv/deconv layer and
specified them in square brackets in the titles of
appropriate pictures. This allowed us to understand that in
the failed experiments, the outputs of deconv2 and
deconv1 layers were saturated, and therefore the pixels of
the restored image had the value 0 and the loss values
during training were NaN (Not A Number).

All appropriate .prototxt files of the developed CAE
along with all Matlab scripts which we have used for all
visualizations have been published in the Caffe user
group [33] and Dr. A. Luczak’s web-page [34]. It is
necessary to note, that the developed CAE model is
working on the version of Caffe used/distributed by Noh

et al [24] (the date of the files in this version is Jun 16,
2015). We ran the CAE model on the latest version we
have (the date of files in this version is Apr 05, 2016). It
seems, in the newer versions after Jun 16, 2015, the Caffe
developers have changed: (i) the syntax of layer
descriptions – from “layers” to “layer”, and layers’ types
from “CONVOLUTION” to “Convolution”, etc. and (ii)
the internal representation of fully-connected
(InnerProduct) layers: it is a 2-dimensional array now, not
4-dimensional, as it was in the previous version(s). To
deal with these issues it is necessary to change the syntax
in the .prototxt files accordingly and to change the
dimensionality of the last fully-connected layer before the
first deconvolution layer in the decoder part using the
<reshape> layer as follows: <layer {name: "reshape"
type: "Reshape" bottom: "ip1decode" top: "ip1decodesh"
reshape_param { shape { dim: 0 dim: 0 dim: 1 dim: 1
}}}>.

IV. CONCLUSIONS

The development of a deep (stacked) convolutional
auto-encoder in Caffe deep learning framework and its
experimental evaluation are presented in this paper. The
paper contains the first research results of our deep
convolutional auto-encoder. The proposed model does
not contain pooling/unpooling layers yet. In contrast to
the classic stacked auto-encoder proposed by Hinton et al
[2], convolutional auto-encoders allow using the desirable
properties of convolutional neural networks for image
data processing tasks while working within an
unsupervised learning paradigm. The results of our
experimental research show comparable accuracy in a
dimensionality reduction task compared with the classic
auto-encoder on the example of MNIST dataset.

During the creation of this convolutional auto-
encoder we have used well-known principles, mentioned
in Section 2 above, which are used by many machine
learning researchers every day. Nevertheless, we believe
that our approach and research results, presented in this
paper, will help other researchers in general - and the
Caffe user group in particular - to create efficient deep
neural network architectures in future.

Application of the developed deep convolutional
auto-encoder for our tasks in the neuroscience field and
creation of more complex architectures with
pooling/unpooling layers are the directions of our future
research.

ACKNOWLEDGMENT

We would like to thank Dr. Eric Chalmers for the
editorial help and Dr. Robert Sutherland for help with
financial support.

657

Figure 7. Visualization of encoding and decoding digit “2” by 10-dimensional CAE Model 2

REFERENCES
[1] J. Masci, U. Meier, D. Ciresan, J. Schmidhuber, “Stacked

convolutional auto-encoders for hierarchical feature extraction,”
Lecture Notes in Computer Science, vol. 6791, pp. 52-59, 2011.

[2] G. E. Hinton, R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504-507, 2006.

[3] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, issue 11, pp. 2278-2324, 1998.

[4] M. Ranzato, F. J. Huang, Y.-L. Boureau, Y. LeCun,
“Unsupervised learning of invariant feature hierarchies with
applications to object recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’07), 2007, pp. 1-8.

[5] P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proceedings of the 25th International Conference on Machine
Learning (ICML’08), 2008, pp. 1096-1103.

[6] G. E. Hinton, A. Krizhevsky, S. D. Wang, “Transforming auto-
encoders,” Lecture Notes in Computer Science, vol. 6791, pp. 44-
51, 2011.

[7] Cuda-convnet2, Fast convolutional NNs in C++/CUDA,
https://github.com/akrizhevsky/cuda-convnet2

[8] Theano, a Python library to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays
efficiently, http://deeplearning.net/software/theano/

[9] Lasagne, Lightweight library to build and train neural networks in
Theano, http://lasagne.readthedocs.org/

[10] Torch7, a scientific computing framework, http://torch.ch/
[11] Caffe, a deep learning framework, http://caffe.berkeleyvision.org/
[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, T. Darrell, “Convolutional
architecture for fast feature embedding,” arXiv:1408.5093, 2014.

[13] Caffe user group, https://groups.google.com/forum/#!forum/caffe-
users

[14] Way to Convolutional Autoencoder, https://groups.google.com/
forum/#!topic/caffe-users/PtbX9H70fsg

[15] Configurate Convolutional Auto-Encoders in Caffe #1647,
https://github.com/BVLC/caffe/issues/1647

[16] Is there a ticket for adding unpooling support to Caffe?,
https://groups.google.com/forum/#!topic/caffe-users/rB5jSw
qrwDY

[17] Matlab/Octave toolbox for deep learning, https://github.com/
rasmusbergpalm/DeepLearnToolbox

[18] Matlab Environment for Deep Architecture Learning,
https://github.com/dustinstansbury/medal

[19] Convolutional autoencoders in python/theano/lasagne,
https://swarbrickjones.wordpress.com/2015/04/29/convolutional-
autoencoders-in-pythontheanolasagne/

[20] Code for a convolutional autoencoder written on python, theano,
lasagne, nolearn, https://github.com/mikesj-public/convolutional
_autoencoder/tree/master

[21] Classifying plankton with deep neural networks,
http://benanne.github.io/2015/03/17/plankton.html

658

[22] Torch7 auto-encoder demo, https://github.com/torch/demos/blob/
master/train-autoencoder/train-autoencoder.lua

[23] S. Khallaghi, Training Autoencoders on ImageNet Using Torch 7,
http://siavashk.github.io/2016/02/22/autoencoder-imagenet/

[24] Convolutional deep autoencoder on MNIST,
https://github.com/julienr/ipynb_playground/blob/master/keras/co
nvmnist/keras_conv_autoencoder_mnist.ipynb

[25] Nervana Systems/Neon, Convolutional autoencoder example
network for MNIST data set, https://github.com/NervanaSystems/
neon/blob/master/examples/conv_autoencoder.py

[26] R. Hadsell, S. Chopra, Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 2006, pp. 1735-1742.

[27] H. Noh, S. Hong, B. Han, “Learning deconvolution network for
semantic segmentation,” arXiv:1505.04366v1, 2015.

[28] Modified version of Caffe which support DeconvNet and
DecoupledNet, https://github.com/HyeonwooNoh/caffe

[29] M. D. Zeiler, R. Fergus, “Visualizing and understanding
convolutional networks,” Lecture Notes in Computer Science,
8689, 2014, pp. 818-833.

[30] L. J. P. van der Maaten, “Accelerating t-SNE using tree-based
algorithms,” Journal of Machine Learning Research, vol. 15,
pp. 3221-3245, 2014. https://lvdmaaten.github.io/tsne/

[31] M. D. Zeiler, G. W. Taylor, R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Proceedings
of the IEEE International Conference on Computer Vision
(ICCV’11), 2011, pp. 2018-2025.

[32] Refactor convolution layer and add deconvolution layer #1615,
https://github.com/BVLC/caffe/pull/1615

[33] V. Turchenko, Convolutional Auto-Encoder in Caffe, but still
without pooling-unpooling layers, https://groups.google.com/
forum/#!topic/caffe-users/GhrCtONcRxY

[34] A. Luczak, Lethbridge Brain Dynamics, http://lethbridgebrain
dynamics.com/artur-luczak/ and http://people.uleth.ca/~luczak/
papers/CAEzip.zip

659

