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Abstract—The development of a deep (stacked) 
convolutional auto-encoder in the Caffe deep learning 
framework is presented in this paper. We describe simple 
principles which we used to create this model in Caffe. The 
proposed model of convolutional auto-encoder does not have 
pooling/unpooling layers yet. The results of our 
experimental research show comparable accuracy of 
dimensionality reduction in comparison with a classic auto-
encoder on the example of MNIST dataset. 
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I. INTRODUCTION 

The convolutional auto-encoder (CAE) is one of the 
most wanted architectures in deep learning research. As an 
auto-encoder, it is based on the encoder-decoder 
paradigm, where an input is first transformed into a 
typically lower-dimensional space (encoder part) and then 
expanded to reproduce the initial data (decoder part). It is 
trained in unsupervised fashion allowing it to extract 
generally useful features from unlabeled data, to detect 
and remove input redundancies and to present essential 
aspects of analyzing data in robust and discriminative 
representations [1]. Auto-encoders and unsupervised 
learning methods have been widely used in many 
scientific and industrial applications, solving mainly 
dimensionality reduction and unsupervised pre-training 
tasks. Compared to the architecture of a classic stacked 
auto-encoder [2], CAE may be better suited to image 
processing tasks because it fully utilizes the properties of 
convolutional neural networks, which have been proven to 
provide better results on noisy, shifted and corrupted 
image data [3]. Theoretical issues of CAE developments 
are well described in many research papers [1, 4-6]. 

Modern deep learning frameworks, i.e. ConvNet2 [7], 
Theano+Lasagne [8-9], Torch7 [10], Caffe [11] and 
others, have become very popular tools in the deep 
learning research community since they provide fast 
deployment of state-of-the-art deep learning models along 
with appropriate training strategies (Stochastic Gradient 
Descent, AdaDelta, etc.) allowing rapid research progress 
and emerging commercial applications. Our interest is to 

apply deep learning technologies, namely a CAE, for 
image processing in the neuroscience field. We have 
chosen Caffe deep learning framework mainly for two 
reasons: (i) a description of a deep neural network is pretty 
straightforward, it is just a text file with the description of 
layers and (ii) Caffe has a Matlab wrapper, which is very 
convenient and allows getting Caffe results directly into 
Matlab workspace for their further processing 
(visualization, etc) [12].  

There are several existing solutions/attempts to 
develop and research a CAE model on different platforms, 
but to the best knowledge of the authors there is no current 
CAE implementation in Caffe yet. The issue of CAE 
implementation is permanently active in the Caffe user 
group [13-16]. There are two implementations of one-
layer (not-stacked) CAE [17] and convolutional Restricted 
Boltzmann Machine [18] in Matlab. Mike Swarbrick 
Jones presented the implementation of CAE in 
Theano/Lasagne [19-20]. The Deep Sea team [21], who 
won a 100,000 US dollar prize (1st place) in the National 
Data Science Bowl, a data science competition where the 
goal was to classify images of plankton, has reported the 
use of CAE to pre-train only convolutional layers of their 
network (also implemented in Theano/Lasagne [9]). But 
they did not use this approach in their final winning 
architecture since they did not receive any substantial 
improvement with CAE pre-training. There are also CAE 
implementations: (i) in the examples of the Torch7 deep 
learning framework [22], (ii) recently implemented based 
on Torch7 [23], (iii) recently implemented on 
Theano/Keras [24] and (iv) in the examples of the Neon 
deep learning framework [25]. 

The goal of this paper is to present our first results of 
the practical implementation of a CAE model in Caffe 
deep learning framework as well as the experimental 
research of the proposed model on the example of MNIST 
dataset and a simple visualization technique which helped 
us to receive these results. 

II. CREATION CAE MODEL IN CAFFE 

In the examples of Caffe there are two models which 
solve the task of dimensionality reduction. The first is a 
classic stacked auto-encoder, proposed by Hinton et al [2], 
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and the second is a Siamese network, proposed by LeCun 
et al [26]. The classic auto-encoder model is well 
researched and it trains in a purely unsupervised fashion. 
The Siamese network consists of two LeNet [3] 
architectures coupled in a Siamese way and ended by a 
contrastive loss function. Siamese network trains in a 
“semi-supervised” fashion, since for forming the training 
set we have to label a couple of input images (chosen 
randomly), which we are saving into two channels (left 
and right), by 1, if the images belong to the same class and 
by 0 otherwise. The visualizations how the example Caffe 
implementations of the classic auto-encoder and the 
Siamese network solve the dimensionality reduction task 
encoding the test set (10000 examples) of MNIST in a 2-
dimensional (2D) space are depicted in Fig. 1 and Fig. 2 
respectively.  

 

 
Figure 1.  Visualization of MNIST test set in a 2D space 

by classic 2-dimensional auto-encoder 

 

 
Figure 2.  Visualization of MNIST test set in a 2D space 

by Siamese network 

 
Following the success of the LeNet [3] architecture 

and the paper [1] which showed experimentally that 

convolutional+pooling layers provide a better 
representation of convolutional filters and, furthermore, 
classification results, we started to construct CAE by the 
scheme conv1-pool1-conv2-pool2 in the encoder part and 
deconv2-unpool2-deconv1-unpool1 in the decoder part. 
We also have been inspired by the work of Hyeonwoo 
Noh et al [27] and we have used their non-official Caffe 
distribution [28], where they have implemented an 
unpooling layer, which is still absent in the official Caffe 
distribution. This CAE model did not train in our previous 
experiments (which are the topic of a separate paper), and, 
therefore, we have eliminated pooling-unpooling layers 
from our consideration. Masci et al [1] showed that 
convolutional architectures without max-pooling layers 
give worse results, but architectures without pooling and 
appropriate unpooling layers are definitely working 
architectures, and it is a good point to start first with some 
simpler working architecture and then to increase the 
complexity of the model.  

After we have eliminated pooling-unpooling layers 
and added a non-linear activation function, <Sigmoid> in 
our case, after each convolutional and deconvolution layer 
[4], we have noticed, that the developed model is very 
similar to the classic auto-encoder model [2]. The 
difference is, the first two fully-connected layers of the 
encoder part have been replaced by two convolutional 
layers, and the last two fully-connected layers of the 
decoder part have been replaced by two deconvolution 
layers. The architecture of the developed CAE model in 
Caffe is depicted in Fig. 3. Taking into account some 
similarity between the classic auto-encoder and the 
developed model of CAE, we have used the following 
principles during our research: 

1. The model should be symmetric in terms of the 
total size of feature maps and the number of 
neurons in all hidden layers in both the encoder 
and decoder parts. These sizes and numbers 
should decrease from layer to layer in the encoder 
part and increase in the same way in the decoder 
part similarly to a classic auto-encoder. These 
sizes and numbers should not be less than some 
minimal values allowing handling the size of the 
input data from the informational point of view; 

2. Similarly to the example of the classic auto-
encoder in Caffe, for the CAE model we have 
used two loss functions, 
<Sigmoid_Cross_Entropy_Loss> and 
<Euclidean_Loss>. Preliminary experimental 
research has shown that the use of only one of 
these loss functions separately does not provide 
good convergence results; 

3. Visualization of the values (along with its 
numerical representation) of trainable filters, 
feature maps and hidden units from layer to layer 
allows better understanding of how data are 
converted/processed from layer to layer [29]; 
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Figure 3.  CAE model in Caffe 

4. The main purpose of the activation function after 
each convolutional/deconvolution layer is non-
linear data processing [4]. Since the nature of 
convolutional/deconvolution operations is a 
multiplication, our visualization showed the huge 
rise of a resulting value of 
convolutional/deconvolution operations (the 
values of feature maps) in encoder/decoder parts 
from layer to layer which prevents the CAE 
model from a desirable convergence during 
learning. So the use of activation functions, which 
drops the resulting value of feature maps to the 
interval [0...1] kept the values of feature maps at 
the end of the decoder part smaller in order to 
provide good convergence of the whole model; 

5. The well-known fact is that good generalization 
properties of neural networks depend on the ratio 
of trainable parameters to the size and dimension 
of the input data. Therefore it is necessary to 
perform a set of experiments on the existing 
model of classic auto-encoder in order to find 
better architecture, (i.e. the size of trainable 
parameters and appropriate number of neurons in 
all hidden layers) which provides better 
generalization properties. Then, a CAE with 
similar size in terms of the total size of feature 
maps and the number of neurons in all hidden 
layers could be used to create the CAE model 
with good generalization properties. We cannot 
compare the classic auto-encoder and the CAE on 
the basis of the number of trainable parameters, 
because a convolutional network of the same size 
has much fewer trainable parameters [3]; 

6. The created architecture should be stable. Since 
different runs of a neural network may show 
different learning convergences (values of loss 
function) depending on random initialization of 
weights/biases, under stable architecture we mean 
the same convergence results within several (at 
least three) runs of the same model. 

The practical implementation of these principles and 
some experimental results are presented in the next 
section. 

III. EXPERIMENTAL RESULTS 

All experimental researches were fulfilled on a 
workstation operated under Ubuntu 14.04.2 operation 
system. The workstation is equipped with 4-core (8 
threads visible in Linux) Inter(R) Xeon(R) E5620@2.40 
GHz processor, 51 Gb of RAM and GeForce GTS 450 
GPU. The GPU has Fermi architecture, 192 CUDA cores, 
1 Gb of RAM and computing capability 2.1. The version 
of Caffe distributed by Noh et al. [28] was used in the 
experiments. The training of all presented models was 
performed in GPU mode (solver_mode: GPU), thus one 
CPU core + GPU device were utilized by Caffe during the 
training. 
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The results of experimental tests of different sizes 
(further - architectures) of classic auto-encoder from Caffe 
examples are presented in Table I. We were sure that 
Hinton et al. presented the best architecture (third row in 
Table I) in their Science paper [2], but, as mentioned 
above, we wanted to research the generalization properties 
of smaller and bigger architectures in order to use this 
experience to create our CAE model. The number of 
trainable parameters for each architecture is specified in 
the first column. Here in Table I and in all next Tables, all 
calculations are provided for the case N = 2 dimensions. 
The size of the MNIST training dataset we calculated as 
60000 examples x 784 elements = 47040 K elements. The 
ratio of MNIST size to the number of the training 
parameters (w+b) is specified in the second column. We 
trained each architecture in three fashions, with 2, 10 and 
30 (30 is exactly as in Caffe examples) neurons in the last 
hidden layer of the encoder part, which corresponds to 2, 
10-, 30-dimensional space of encoding respectively. 
According to Hinton et al [2] these architectures are called 
2-, 10- and 30-dimensional auto-encoders. We did three 
runs for each architecture, the values of both loss 
functions, separated by “;” are presented in red for the 
training set and in black for the test set. In the last column 
we specified the number of classes we evaluated visually 
(see Fig. 1) from three runs of each architecture. For 
example, the number ‘25’ means that 25 classes from 30 
in total (10 classes per three runs) were correctly 
classified. Under ‘correctly classified’ we mean that the 
color of one class is not mixed with the color of another 
class(es), but this is, of course, a subjective sentiment. 

We have used t-SNE technique [30] to visualize 10- 
and 30- dimensional data, produced by auto-encoder. For 
that visualization (it is showed later on the example of 
CAE in Fig. 5-6) we have integrated both calls, Caffe and 
t-SNE, into one Matlab routine. 

The learning parameters of the solver of the classic 
auto-encoder (in file solver.prototxt) we left as it is 
specified in Caffe examples. These parameters were: 
solver_type: SGD (by default), base_lr: 0.01, lr_policy: 
"step", gamma: 0.1, stepsize: 1000, momentum: 0.9 and 
weight_decay: 0.0005. The results in Table I are specified 
for 5000 training iterations. The training time for the 
architecture 784-1000-500-250-N-250-500-1000-784 
from the third row of Table I was 2 minutes. Table I 
shows that the architectures with bigger ratio Data/(w+b), 
namely 81/1, 43/1 and 17/1 have better generalization 
properties because they provide lower (better) values of 
loss functions during the training and testing and better 
visualization results.  

It is necessary to note, that in the case of the classic 
fully-connected auto-encoder researched above, the 
number of trainable parameters (except biases) is equal to 
the number of connections. But this is not a case of a CAE 
since convolutional/deconvolution layers have much 
fewer trainable parameters, because the sizes of 
convolutional and deconvolution kernels are the trainable 

parameters in case of CAE. Therefore, in order to build a 
CAE, we have operated with the term “CAE size” which 
is the total number of elements in feature maps and the 
number of neurons in all hidden layers in the encoder and 
decoder parts. In this paper we present two architectures: 
(i) Model 1, where we more-or-less adjusted the CAE size 
to the best architecture of the classic auto-encoder (third 
row in Table I) and (ii) Model 2, where we increased the 
CAE size after the series of experimental tests of Model 1.  

Table II contains the architecture parameters for both 
developed CAE models. In both models we did 
convolution with kernels conv1 9x9 and conv2 9x9 in the 
encoder part and we came back with deconvolution 
kernels deconv2 12x12 and deconv1 17x17 in the decoder 
part (Fig. 1). We have chosen this size of deconvolution 
kernels in order to restore the same size of MNIST image 
28x28. The only difference between the two models is the 
number of feature maps in conv/deconv layers and the 
number of neurons in fully-connected layers in the 
encoder and decoder parts. In the third column of Table II 
we can see (bold font) that both proposed models are 
practically symmetric in terms of the total number of 
elements in feature maps and the number of neurons in all 
hidden layers of the encoder and decoder parts.  

The number of trainable parameters for both models is 
specified in the last column of Table II and in Table III 
respectively. Since the deconvolution operation has the 
same nature as convolution [31], we have used the same 
approach to calculate the number of trainable parameters 
both in the encoder and decoder parts. These calculations 
can be easily checked by calling Caffe from Matlab using 
the command <caffe(‘weights’);>. In decoder part, the 
purpose of the deconvolution layer deconv1neur, which 
corresponds to the term (1*1w+1b) in the third column of 
Table III, is to transform all feature maps of the last 
deconvolution layer deconv1 into one restored image with 
the same size 28x28 pixels as the original [32]. As we can 
see from Tables II and III, the proposed CAE models are 
practically symmetric not only in terms of the total 
number of elements in feature maps and the number of 
neurons in the hidden layers, but also in terms of the 
number of trainable parameters in both the encoder and 
decoder parts. The comparison with a similarly-sized 
classic auto-encoder (3502, third row of Table I) and 
Model 1 of the developed CAE (3996, Table II) shows 
that the CAE has (2822504/74893 =) 38 times fewer 
trainable parameters. 

The results of experimental tests of the two developed 
CAE models are presented in Table IV, which is 
organized similarly to Table I. We evaluate 2-, 10- and 
30-dimensional CAEs, the number of dimensions 
corresponds to the number of neurons in the last hidden 
layer ip2encode (see Fig. 3) of the encoder part. The 
results in Table IV are specified for 20000 training 
iterations. The comparison of both tables shows that 
Model 1 provides the same minimum values of loss 
functions as well as the same number of visualization 
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classes as the best architecture of the classic auto-encoder 
(3rd row) from Table I. The experimental tests of Model 2 
showed better (lower) values of loss functions reached 

during the training, and slightly better visualization results 
in comparison with Model 1. 

 

TABLE I.  RESULTS OF EXPERIMENTAL RESEARCH OF CLASSIC AUTO-ENCODER FROM CAFFE EXAMPLES 

Architecture, Number of 
trainable parameters (w+b), 
Auto-encoder size, elements 

Data 
/(w+b) 

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS; 
EUCLIDEAN_LOSS), train / test 

Visuali-
zation, 
classes N, Dims Run 01 Run 02 Run 03 

784-300-150-75-N- 
75-150-300-784, 

584254, 
1052 

81/1 2 150.67; 17.40 
156.15; 18.12 

150.45; 17.40 
159.97; 18.85 

148.21; 17.02 
157.87; 18.15 

14 

10 110.50; 10.14 
113.60; 10.56 

108.04; 9.75 
112.22; 10.15 

113.24; 10.64 
116.13; 11.00 

22 

30 107.03; 9.56 
110.76; 10.03 

106.44; 9.38 
110.25; 9.92 

104.26; 9.09 
107.64; 9.51 

26 

784-500-250-125-N- 
125-250-500-784, 

1098754, 
1752 

43/1 2 147.55; 16.75 
152.79; 17.44 

146.48; 16.70 
155.13; 17.97 

144.91; 16.43 
153.05; 17.56 

17 

10 105.97; 9.39 
109.39 ; 9.85 

103.69; 8.99 
106.32; 9.35 

103.59; 9.05 
106.45; 9.36 

23 

30 93.55; 7.34 
95.66; 7.51 

94.38; 7.45 
97.18; 7.76 

90.60; 6.82 
93.06; 7.08 

25 

784-1000-500-250-N- 
250-500-1000-784, 

2822504 
3502 

17/1 2 142.99; 16.08 
152.02; 17.40 

143.33; 16.15 
152.68; 17.53 

147.90; 16.85 
151.33; 17.20 

21 

10 105.68; 9.36 
109.05; 9.80 

102.25; 8.85 
105.16; 9.15 

107.80; 9.74 
111.04; 10.16 

25 

30 89.51; 6.64 
91.75; 6.87 

92.91; 7.23 
95.75; 7.53 

97.33; 7.94 
99.82; 8.20 

27 

784-2000-1000-500-N- 
500-1000-2000-784, 

8145004 
7002 

6/1 2 152.25; 17.54 
161.82; 18.98 

202.58; 26.01 
205.81; 26.44 

202.58; 26.01 
205.80; 26.44 

5 

10  130.65; 13.62 
136.55; 14.44 

139.03; 15.33 
148.95; 16.85 

201.60; 25.83 
204.91; 26.28 

12 

30  129.13; 13.39 
134.96; 14.17 

157.92; 18.44 
166.55; 19.80 

129.75; 13.54 
135.23; 14.25 

16 

784-3000-1500-750-N- 
750-1500-3000-784, 

15967504 
10502 

3/1 2  202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

3 

10  202.64; 26.03 
205.81; 26.44 

202.58; 26.03 
205.75; 26.43 

202.66; 26.03 
205.82; 26.44 

7 

30  200.96; 25.70 
204.28; 26.16 

202.64; 26.03 
205.80; 26.44 

202.64; 26.03 
205.80; 26.44 

15 

TABLE II.  ARCHITECTURE PARAMETERS OF TWO CAE MODELS 

CAE Architecture Size of feature maps and number of 
hidden nodes 

CAE size, 
elements 

Number of trainable 
parameters (w+b) 

Model 1 784-(9x9x4)-(9x9x2)-125-N- 
125-(12x12x2)-(17x17x2)-784 

(20x20x4)-(12x12x2)-125-N- 
125-(12x12x2)-(28x28x2) 

3996 74893 

1600-288-125-N-125-288-1568 
Model 2 784-(9x9x8)-(9x9x4)-250-N- 

250-(12x12x4)-(17x17x4)-784 
(20x20x8)-(12x12x4)-250-N- 

250-(12x12x4)-(28x28x4) 
7990 297391 

3200-576-250-N-250-576-3136 

TABLE III.  CALCULATION OF THE NUMBER OF TRAINABLE PARAMETERS IN BOTH ENCODER AND DECODER PARTS 

CAE Number of trainable parameters, w(weights)+b(biases), i(inputs), o(outputs) 
Encoder part Decoder part Total 

Model 1 conv1->((9*9w+1b)*1i*4o)+ 
conv2->((9*9w+1b)*4i*2o)+ 

ip1encode->(288i*125o+125b)+ 
ip2encode->(125i*2o+2b) = 

(324w+4b)+(648w+2b)+(36000w+125b)+(250w+2
b) = 37355 

ip1decode->(2i*125o+125b)+ 
deconv2->((12*12w+1b)*125i*2o)+ 

deconv1->((17*17w+1b)*2i*2o)+ 
deconv1neur->((1*1w+1b)*2i*1o)+ 

(250w+125b)+(36000w+2b)+(1156w+2b)+ 
(2w+1b) = 37538 

74893 

Model 2 conv1->((9*9w+1b)*1i*8o)+ 
conv2->((9*9w+1b)*8i*4o)+ 

ip1encode->(576i*250o+250b)+ 
ip2encode->(250i*2o+2b) = 
(648w+8b)+(2592w+4b)+ 

(144000w+250b)+(500w+2b) = 148004 

ip1decode->(2i*250o+250b)+ 
deconv2->((12*12w+1b)*250i*4o)+ 

deconv1->((17*17w+1b)*4i*4o)+ 
deconv1neur->((1*1w+1b)*4i*1o)+ 

(500w+250b)+(144000w+4b)+(4624w+4b)+ 
(4w+1b) = 149387 

297391 
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TABLE IV.  RESULTS OF EXPERIMENTAL RESEARCH OF DEVELOPED CAE 

Architecture, 
Number of trainable parameters (w+b), 

CAE size 

LOSS values, (SIGMOID_CROSS_ENTROPY_LOSS; 
EUCLIDEAN_LOSS), train / test 

Visuali-
zation, 
classes N, Dims Run 01 Run 02 Run 03 

Model 1, 
784-(20x20x4)-(12x12x2)-125-N- 

125-(12x12x2)-(28x28x2)-784, 
74893, 
3996 

2 152.68; 17.95 
159.47; 18.71 

151.83; 17.61 
160.10; 18.76 

156.65; 18.46 
159.76; 18.66 

20 

10 105.14; 9.33 
109.58; 9.88 

107.86; 9.72 
111.80; 10.24 

109.37; 9.91 
113.43; 10.39 

26 

30 94.53; 7.37 
98.39; 7.78 

96.02; 7.57 
98.18; 7.76 

93.58; 7.14 
96.80; 7.53 

26 

Model 2, 
784-(20x20x8)-(12x12x4)-250-N- 

250-(12x12x4)-(28x28x4)-784, 
297391, 

7990 

2 142.50; 15.93 
148.74; 16.85 

143.50; 16.20 
148.33; 16.72 

143.16; 16.17 
149.68; 16.99 

22 

10 90.72; 6.93 
93.12; 7.15 

91.34; 7.04 
93.20; 7.19 

93.27; 7.35 
94.91; 7.42 

26 

30 71.38; 3.82 
72.52; 3.86 

70.54; 3.66 
71.65; 3.69 

71.82; 3.88 
73.65; 4.00 

26 

 
The visualizations showing how Model 2 solves the 

dimensionality reduction task encoding the test set of 
MNIST in a 2D space are depicted in Figs. 4-6. Similarly 
we have used t-SNE technique [30] to visualize 10- and 
30- dimensional data, produced by the 10- and 30-
dimensional CAEs. In both cases, i.e. for the research of 
classical auto-encoder and the developed CAE, we have 
reformatted the original MNIST dataset into HDF5 format 
since this data format is perfectly supported by Matlab. 
The learning parameters of the solver of the developed 
CAE with stable architecture were: solver_type: SGD, 
base_lr: 0.006, lr_policy: "fixed", and weight_decay: 
0.0005. We run several experiments, changing the 
architecture and learning parameters of CAE, but in many 
cases they were not stable architectures. For example, we 
tried different initializations of weights and biases 
(<weight_filler> and <bias_filler>). The presented results 
were provided with the following initialization: 
<bias_filler {type: "constant"}> for all layers, 
<weight_filler {type: "xavier"}> for 
convolutional/deconvolutional layers, <weight_filler 
{type: "gaussian" std: 1 sparse: 25}> for fully-connected 
(InnerProduct) layers. Also we have tried <ReLU> 
activation functions instead of <Sigmoid> and, 
surprisingly, we have received worse results. 

 
Figure 4.  Visualization of MNIST test set in a 2D space 

by 2-dimensional CAE Model 2 

 
Figure 5.  Visualization of MNIST test set in a 2D space 

by 10-dimensional CAE Model 2 + t-SNE 

 
Figure 6.  Visualization of MNIST test set in a 2D space 

by 30-dimensional CAE Model 2 + t-SNE 

The accepted models and learning parameters are not 
unique, we are pretty sure there are a lot of other 
configurations, which could provide stable CAE 
architectures. The training times for the Model 1 and 
Model 2 running for 20000 training iterations were 68 and 
100 minutes respectively. For quick reference we have 
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collected all learning parameters of the classic auto-
encoder and the developed CAE in Table V. 

TABLE V.  LEARNING PARAMETERS OF CLASSIC AUTO-ENCODER 
AND DEVELOPED CAE IN CAFFE 

 Learning parameters 
in file solver.prototxt 

Training time 

Classic 
auto-

encoder 

base_lr: 0.01, 
lr_policy: "step", 

gamma: 0.1 
stepsize: 1000, 

momentum: 0.9,  
weight_decay: 0.0005 

Architecture 784-1000-
500-250-N-250-500-1000-

784, 5000 training 
iterations 
2 minutes 

Deve-
loped 
CAE 

base_lr: 0.006, 
lr_policy: "fixed",  

weight_decay: 0.0005 

Model 1, 
20000 

training 
iterations 

Model 2, 
20000 

training 
iterations 

68 minutes 100 
minutes 

 
As mentioned above, during experimental research 

we have visualized the feature maps and the outputs of 
the hidden layer neurons in order to understand how data 
are processing inside the CAE. The implementation of 
such visualization is simple and straightforward thanks to 
the Matlab wrapper in Caffe. We just created 15 .prototxt 
files corresponding to the number of CAE layers in Fig. 
3. After training, and having an appropriate .caffemodel 
file, we call Caffe in Matlab using each of those .prototxt 
files as an argument. Received values, produced by each 
layer were visualized. An example showing how CAE 
Model 2 encodes and decodes the digit “2” is depicted in 
Fig. 7. The left upper picture is the original image with 
28x28 pixels and the right bottom picture with the name 
<Deconv1neursig> is the restored image with 28x28 
pixels. The title of each picture contains the following 
information: the digit we visualized (i.e. “2” - we have 
such pictures for 10 example digits from MNIST), the 
picture number (i.e. “01”, “02”, etc.), the size of the 
appropriate layer how it is internally represented in Caffe 
(i.e. “20x20x8”), the name of the appropriate layer 
corresponding to the names of the layers from Fig. 3 (i.e. 
“Conv1”). We also calculated the minimum and 
maximum values for each conv/deconv layer and 
specified them in square brackets in the titles of 
appropriate pictures. This allowed us to understand that in 
the failed experiments, the outputs of deconv2 and 
deconv1 layers were saturated, and therefore the pixels of 
the restored image had the value 0 and the loss values 
during training were NaN (Not A Number).  

All appropriate .prototxt files of the developed CAE 
along with all Matlab scripts which we have used for all 
visualizations have been published in the Caffe user 
group [33] and Dr. A. Luczak’s web-page [34]. It is 
necessary to note, that the developed CAE model is 
working on the version of Caffe used/distributed by Noh 

et al [24] (the date of the files in this version is Jun 16, 
2015). We ran the CAE model on the latest version we 
have (the date of files in this version is Apr 05, 2016). It 
seems, in the newer versions after Jun 16, 2015, the Caffe 
developers have changed: (i) the syntax of layer 
descriptions – from “layers” to “layer”, and layers’ types 
from “CONVOLUTION” to “Convolution”, etc. and (ii) 
the internal representation of fully-connected 
(InnerProduct) layers: it is a 2-dimensional array now, not 
4-dimensional, as it was in the previous version(s). To 
deal with these issues it is necessary to change the syntax 
in the .prototxt files accordingly and to change the 
dimensionality of the last fully-connected layer before the 
first deconvolution layer in the decoder part using the 
<reshape> layer as follows: <layer {name: "reshape" 
type: "Reshape" bottom: "ip1decode" top: "ip1decodesh" 
reshape_param { shape { dim: 0 dim: 0 dim: 1 dim: 1 
}}}>. 

IV. CONCLUSIONS 

The development of a deep (stacked) convolutional 
auto-encoder in Caffe deep learning framework and its 
experimental evaluation are presented in this paper. The 
paper contains the first research results of our deep 
convolutional auto-encoder. The proposed model does 
not contain pooling/unpooling layers yet. In contrast to 
the classic stacked auto-encoder proposed by Hinton et al 
[2], convolutional auto-encoders allow using the desirable 
properties of convolutional neural networks for image 
data processing tasks while working within an 
unsupervised learning paradigm. The results of our 
experimental research show comparable accuracy in a 
dimensionality reduction task compared with the classic 
auto-encoder on the example of MNIST dataset.  

During the creation of this convolutional auto-
encoder we have used well-known principles, mentioned 
in Section 2 above, which are used by many machine 
learning researchers every day. Nevertheless, we believe 
that our approach and research results, presented in this 
paper, will help other researchers in general - and the 
Caffe user group in particular - to create efficient deep 
neural network architectures in future.  

Application of the developed deep convolutional 
auto-encoder for our tasks in the neuroscience field and 
creation of more complex architectures with 
pooling/unpooling layers are the directions of our future 
research. 
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Figure 7.  Visualization of encoding and decoding digit “2” by 10-dimensional CAE Model 2 
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