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Spontaneous and driven cortical activity: implications for
computation
Dario L Ringach
The traditional view of spontaneous neural activity as ‘noise’

has been challenged by recent findings suggesting that:

(a) spontaneous activity in cortical populations is highly

structured in both space and time, (b) the spatio-temporal

structure of spontaneous activity is linked to the underlying

connectivity of the cortical network, (c) spontaneous cortical

activity interacts with external stimulation to generate

responses to the individual presentations of a stimulus,

(d) network connectivity is shaped in part by the statistics of

natural signals and (e) ongoing cortical activity represents a

continuous top-down prediction/expectation signal that

interacts with incoming input to generate an updated

representation of the world. These results can be integrated

to provide a new framework for the study of cortical

computation.
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Introduction
Spontaneous activity is defined as the firing of neurons

measured in the absence of sensory input. Yet, even

under conditions where one attempts to minimize exter-

nal stimulation the sensory end-organs remain active and

generate a weak but continual input to central cortical

structures. It has been known that such weak input can

lead to perceptual outcomes (hallucinations), as it occurs

in cases of sensory deprivation. An example is the Charles

Bonnet syndrome, a condition where patients experience

various sorts of visual hallucinations due to vision loss,

from simple straight lines to detailed and complex pic-

tures [1]. A lesser known but more amusing instance is

the recount by Richard Feynman of his experiences

undergoing sensory deprivation in one of John Lilly’s

isolation tanks, after which he pondered: ‘[. . .] whether
www.sciencedirect.com
hallucinations, like dreams, are influenced by what you

already have in your mind — from other experiences

during the day or before, or from things you are expecting

to see’ [2]. Indeed, recent findings show that spontaneous

activity can have perceptual consequences that reflect

‘what you already have in your mind’, as it appears

directly linked to the intrinsic connectivity of cortical

networks and top-down expectations. These studies

highlight that there is much to learn about brain function

even its quiescent state, and underlies the importance of

understanding cortical responses as the fusion of ongoing

activity and sensory input.

Spontaneous activity is structured in space
and time
The relative low rates and apparent randomness in the

spontaneous firing pattern of individual cells did not

prompt early pioneers of cortical electrophysiology to

suspect that they reflected anything else but noise [3].

This picture changed with the first measurements of

population activity across large cortical areas, which

initially relied on the use of voltage-sensitive dyes (VSDI)

[4] and were recently augmented by the proliferation of

multielectrode array recordings [5] and in vivo, two-

photon imaging [6]. These new measurements reveal a

number of important properties of spontaneous activity in

cortical populations: correlated neural activity can be

observed across millimeters of cortex [7,8] and across

different time scales [9,10��], the firing of individual cells

can be related to the patterns of ongoing activity in its

neighborhood [11,12��], and the size of the fluctuations

observed in the spontaneous population activity are of

similar magnitude to those of the mean response to a

high-contrast stimulus [7,13]. These data point to a

potential role of spontaneous activity in normal cortical

processing, which has motivated investigators to take a

fresh look at its role in normal cortical processing.

The structure of spontaneous activity reflects
the underlying connectivity
The first question is what mechanism might responsible

for the generation of structured patterns of ongoing

activity. A promising working hypothesis is that the

structure of spontaneous activity reflects the connectivity

of the cortical network, and the rules by which neurons at

different cortical locations and with different preferences

for stimulus attributes connect to each other [14–17]. The

presence of functional maps in primary visual cortex

provides an ideal model to test this idea. It has been

observed that when the spikes of a cell tuned to a
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particular orientation are used to trigger the averaging of

the VSDI signal in its neighborhood, a pattern emerges

highlighting cortical columns matching the orientation

preference of the cell [11]. This result is expected from a

similar bias in lateral connectivity inferred from anatom-

ical and spike crosscorrelation data [8,18]. Interestingly,

such patterns also emerge in the total absence of an

external visual stimulus [19], as if the cortex were to

be spontaneously ‘hallucinating’ a physical stimulus with

a particular orientation [16]. Theoretical studies have

demonstrated that this behavior is expected from an

underlying connectivity scheme where nearby cells with

similar orientation preferences excite each other, while

those with different orientation preferences inhibit each

other [15,17,20]. Similar connectivity analyses are now

being attempted across cortical areas using BOLD signals

[21]. The key revelation from these studies is that the

activity of cortical networks under weak input may be

used to reveal their intrinsic connectivity, one that may in

fact be masked under conditions of strong sensory stimu-

lation.

Spontaneous activity interacts with external
stimulation
Spontaneous activity can then offer a handle into brain

connectivity, but does it play a functional role in cortical

computation? It could be, for example, that external

stimulation is so strong that effectively erases any traces

of ongoing activity, a situation that would weaken the

notion of spontaneous activity as having a significant role.

All indications are that this is not the case. First, it has

been shown that the variability of responses to repeated

presentations of the same stimulus can be largely

accounted by the ongoing activity present just before

the onset of the stimulus [22]. The simple addition of the

spontaneous state of the cortex at the time of stimulus

presentation to the mean response provided a reasonable

model to explain the responses of the cortex to individual

presentations. This result implies that external stimu-

lation does not overwhelm the ongoing cortical activity

but interacts with it. Second, external stimulation can

lead to response patterns across the cortical population

that are similar to those observed in the spontaneous

regime, as if thalamic input were to trigger a set of

stereotyped response patterns [23–25]. Consistent with

this notion of attractors, the cortical responses evoked by

natural stimulation appear to be very similar to those

observed spontaneously [26�,27,28��]. Such states may be

temporarily protected from being disrupted by external

when the network is a so-called UP state [29], providing a

type of short-term memory mechanism.

The interaction between the input and the ongoing

cortical state depends on the strength of the feed-forward

thalamic signals [9,12��,30,31]. Strong sensory stimu-

lation drives the cells in the network to de-correlate

and respond largely to their local thalamic input. When
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the stimulus is weak, lateral interactions in the cortex

have a substantial influence on the cortical responses

[12��]. Cortical computation operates in a feed-forward

regime for strong stimuli, relies on feedback and top-

down signals for weak stimuli, and adopts an intermedi-

ate regime for moderate inputs [12��,32]. Such adap-

tations occur locally at each retinotopic location, so

that areas of the image with high contrast are processed

in a feed-forward fashion, while areas of low-contrast rely

more on contextual influences (driven by lateral inter-

actions) and top-down predictions. The fact that large

areas of natural images contain low-contrast signals [33]

suggests that vast areas of primary visual cortex may rely

on contextual information to generate an accurate repres-

entation of the sensory input.

Network connectivity may be shaped by the
statistics of natural stimuli
It is easy to envision how patterned spontaneous activity

might be linked to the wiring of the network, but what

dictates the wiring of the network itself, how do attractors

emerge, and what do they mean? One idea is that evol-

ution and developmental rules during the critical period,

where cells that ‘fire-together wire-together’ [34] may

shape cortical connectivity. Under some condition, one

might expect such connectivity to create spatially loca-

lized ‘memories’ (or ‘attractors’) [35] representing the

manifold of naturally occurring stimuli [36�,37,38]. In

support of such a scenario, the repetitive presentation

of natural image sequences leads to activation patterns

that are seen to repeat during spontaneous activity

[39,40��], therefore leaving a memory trace in the net-

work. The statistics of natural images may thus contribute

to shape the local network interactions which, in turn,

govern the intrinsic dynamics of cortical responses. From

a signal processing point projecting the input data into the

manifold of natural signals may prove useful for a variety

of operations, such as de-noising and perceptual filling-in

[36�].

Top-down expectation/prediction/attention
modulates ongoing activity
Some studies have asked directly if spontaneous activity

has a demonstrable perceptual consequence for the pro-

cessing of external stimuli. In one such case, Super et al.
presented monkeys with a difficult figure/ground detec-

tion task [41]. In this task the same physical stimulus may

be detected in some trials, but not perceived in others.

They discovered that the likelihood of the animal detect-

ing the stimulus correlated with the spontaneous level of

activity in V1 before the stimulus presentation. In other

words, the ability of the animal to detect the stimulus

depended critically on the state of the cortex at the time

of the presentation. In another study, monkeys’ decisions

in a motion detection task were correlated with the

spontaneous activity of neurons in area LIP at the time

of stimulus onset, and this correlation was present even in
www.sciencedirect.com
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Figure 1

Visual summary of main concepts. (a) Coding of orientation by a population of V1 cells. Different oriented gratings produce a profile of activity centered

at a different location. Each panel shows the activity of cells with different preferred orientations. (b) Assuming symmetry, the resulting manifold of

population activity is a circle. (c) Conceptual view of how intrinsic dynamics, feed-forward, and feedback drive, combine to drive the cortical state. In

each panel, a ‘force field’ is shown that qualitatively describes how each of the individual mechanisms would act when the cortex is found in different

states (in this case represented by the plane). The red dots indicate the equilibrium points for the feed-forward, feedback, and combined components.

(d) A more general view of the framework. At any point in time primary visual cortex integrates feed-forward information (indicated by the variable Y)

with top-down contextual information provided by extra-striate areas (denoted by the variable Z). The state of population activity in primary visual

cortex is constrained to the manifold of natural signals, represented by the blue surface. One way of thinking about the integration of information is via

Bayesian inference, where the V1 circuitry works to find the state within the manifold that maximizes the conditional probability, p(XjY, Z), under some

assumptions [46], p(XjY, Z)�p(XjY)p(XjZ). A similar arrangement can be postulated at different levels in the visual hierarchy.
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cases where the stimulus had no net motion [42]. Direct

contribution of spontaneous activity to intertrial variabil-

ity in human behavior has also been shown by means of

fMRI [43].

While it was originally proposed that neuronal noise in

sensory neurons could provide a ‘feed-forward’ account of

these phenomena, it is now becoming increasingly clear

that such activity reflects a top-down expectation or

prediction signal [44]. A recent experiment has taken

advantage of reverse correlation methods in the binocular

disparity domain to show very different temporal courses

for stimulus-related and choice-related signals in V2

neurons [45]. During the trial, choice-related activity

increased over time while stimulus-related signals

decreased, arguing for a top-down modulatory signal of

choice. Interestingly, the choice-related activity was sig-

nificant at the time of stimulus presentation, consistent

with prior studies and the notion of top-down expec-

tation.

Conclusions
These results can be integrated to provide a framework

for the study of cortical computation. To summarize the

concepts in a simplified setting, consider the case of

coding the orientation of a sinusoidal grating by V1

neurons. Each stimulus (Figure 1a, left) produces an

activity profile across the population that translates along

the periodic x-axis as its orientation changes (Figure 1b,

right, blue curves). The manifold of this space is a circle

(Figure 1b). The intrinsic connectivity of the cortex

would work continuously to push the state toward the

circle, meaning the circle is an attractor of its dynamics

(Figure 1c, middle left). If, for whatever reason, the cortical

state is found outside the manifold it is pushed back into

it, as indicated by the blue arrows. Feed-forward and

feedback signals can be viewed as external forces acting

on the state of the cortex. Feed-forward input would push

the state to the orientation signaled by the LGN

(Figure 1c, bottom), while feedback input will push the

state to one that would represent an expected or predicted

one (Figure 1c, top). The relative strength of feed-forward

drive would depend on the reliability of LGN input

signaling a particular orientation, while the strength of

top-down signals will depend on reliability of the pre-

dictive signal. The evolution of the cortical state will be

driven by all these forces combined together (Figure 1c,

right).

In this scenario, the lack of an external stimulus generates

a weak feed-forward drive and the cortical state is deter-

mined largely by its own intrinsic dynamics and top-down

expectations. This explains why spontaneous activity is

not noise. Further, if the attractor has been shaped (via

evolution or developmental rules) to represent the mani-

fold of natural signals, it is easy to see how sensory

deprivation or weak input can lead to ‘hallucinations’
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during deprivation [19,40��] and situations where the

cortex representing signals related to expectation or

choice bias [44,45]. In general, however, the manifold

of natural signals is not simple a circle but could be much

more complicated (Figure 1d) [36�,37,38], yet all the same

ideas apply. It should be mentioned that theoretical

versions of these ideas have been put forward before

[46–50], and are now finding growing acceptance as gen-

eral models of signal processing [36�].

The above discussion highlights the increasing need to

study cortical computation in behaving animals, as it is

not possible to study the effects of top-down expectations

and context in anesthetized preparations. Further,

measurements of population activity, such as VSDI,

multielectrode arrays, or two-photon imaging will be

needed to be able to detect the presence of manifold-

attractors in cortical activity. Finally, analyses should

concentrate on single-trial data that explain how sensory

stimulation combines with ongoing activity to determine

behavior.
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