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Abstract. Multi-Agent Reinforcement Learning (MARL) offers a framework for
collaborative decision-making among multiple agents with diverse objectives and
observations through interactions with their environments. In this study, we intro-
duce MA-LSTMTD3, a variant of the Twin Delayed Deep Deterministic (TD3)
method incorporating long-short-termmemory (LSTM) to enhanceMARLperfor-
mance. Our approach aims to address challenges related to coordination and par-
tial observability in complex environments. Through comprehensive experimen-
tation, we demonstrate the efficacy of our memory augmented algorithm across
both Markov Decision Process (MDP) and Partially Observable Markov Deci-
sion Process (POMDP) settings, including scenarios with varying agent counts.
Our findings underscore the potential of memory-based approaches in advancing
MARL algorithms for real-world applications, particularly in environments with
a higher number of collaborating agents.

Keywords: Reinforcement Learning · Multi Agent Systems · LSTM

1 Introduction

The computational field of Reinforcement Learning (RL) offers a framework within
which decision making is aimed at maximizing the reward and minimizing penalties,
through iterative learning [1]. AnRL problem can be formulated in variousways depend-
ing on the assumptions made about the environment, and factors such as task definitions,
the number of agents involved, and the initial knowledge available to these agents [2].
Primarily, single agent RL is formalized within the framework of Markov Decision
Problems (MDP), where a solitary agent interacts with an environment characterized by
probabilistic transitions and rewards. However, in the pursuit of addressing real-world
challenges where multiple decision makers interact at the same time, such as those
encountered in robotics, autonomous systems, or traffic management, the focus has
shifted towards Multi-Agent RL (MARL). In MARL, where multiple agents coexist,
interact, and pursue shared or conflicting objectives, the dynamic nature of the envi-
ronment intricately intertwines with the decision-making process [3]. This necessitates
innovations in advancing coordination mechanisms, optimizing competitive strategies,
and enhancing communication protocols among agents to enable effective collaboration
or competition while achieving desired outcomes.
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The integration of deep neural networks in RL, referred to as deep reinforcement
learning (DRL), has led to emergence of learning techniques that utilizes neural networks
as function approximators. This empowers agents to process high-dimensional input data
and acquire hierarchical representations that capture intricate features of the environ-
ment [4]. Given the capacity of deep neural networks to manage large state and action
spaces, combinations of DRL methods with multi-agent scenarios have shown promise
in addressing the complexities of multi-agent environments including non-stationarity,
partial observability, continuous spaces, training schemes, and transfer learning [5, 6].
However, challenges persist, particularly in effectively capturing the temporal depen-
dencies and long-term dependencies inherent in sequential decision-making processes.
Traditional DRL approaches often struggle to adequately model such dependencies,
leading to suboptimal performance in tasks where past actions significantly influence
future outcomes.

Previous research has explored the integration of memory units within DRL algo-
rithms, enabling agents’ decisions to depend not only on the current state but also on the
history of observed states and actions. Memory mechanisms in MARL are commonly
implemented using Recurrent Neural Networks (RNNs) in deep learning methods, with
adaptation to various environmental settings. For example, [7] investigated the utility of
memory in environments with diverse properties, demonstrating its efficacy in scenarios
where learning agents must model other agents. Similarly, authors in [8] showcased the
effectiveness of memory-driven communication in enhancing coordination in MARL.
They proposed a framework for multi-agent training using deep deterministic policy gra-
dients, facilitating concurrent learning of an explicit communication protocol through a
memory device. This approach resulted in improved performance compared to baseline
algorithms in small-scale systems. Memory units have also proven effective in solv-
ing Partially Observable Markov Decision Processes (POMDPs), where observations
provide only partial information about the underlying state. [9] employed Long Short-
TermMemory (LSTM) units in a policy-gradient method, achieving promising results in
POMDP car driving tasks. Additionally, [10] utilized a temporal difference approach to
update the action-value function, jointly training convolutional and LSTM layers. This
enabled successful learning directly from pixels, effectively addressing the POMDP ver-
sion of Atari games. These developments underscore the growing importance ofmemory
mechanisms in advancing MARL algorithms to tackle challenges related to coordina-
tion, communication, learning, and the inherent uncertainty of POMDPs in multi-agent
environments.

In this paper, we introduce an approach to enhancing MARL by integrating Long
Short-Term Memory (LSTM) units into actor-critic architecture. We present compre-
hensive experimental results across both Markov Decision Process (MDP) and Partially
Observable Markov Decision Process (POMDP) versions of a cooperative environment,
as well as scenarios with varying agent counts. Additionally, we Provide a comparison
of the developed algorithm’s performance with two other baseline methods. Through
experimentation and analysis, we demonstrate the efficacy of our memory-based algo-
rithm in facilitating coordination and handling partial observability in complex envi-
ronments. This approach aids in inferring the underlying state, especially advantageous
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when dealing with missing information, thus highlighting its potential for real-world
applications.

The paper is structured as follows: In the background section, we delve into the theo-
retical foundations of multi-agent reinforcement learning (MARL) and elaborate on the
components of the proposed approach. The methods section provides a detailed expla-
nation of our proposed approach, outlining the integration of LSTM into the actor-critic
architecture and the algorithmic framework employed for training and evaluation. In the
experimental settings and results section, we present our experimental setup, including
the cooperative environment with various settings, and report the outcomes of our exper-
iments. Finally, in the conclusions and discussion section, we summarize our findings,
discuss their implications, and provide insights into future research directions, empha-
sizing the significance of memory-based approaches in advancing MARL algorithms
for real-world applications.

2 Background

2.1 Decision Process

Markov Decision Process (MDP). A Markov Decision Process (MDP) is a sequen-
tial decision process for a fully observable, stochastic environment with a Markovian
transition model and additive rewards [11]. Formally, MDP can be defined as a 4-tuple
(S, A, P, R), where S is the state space, AA is the action space, PP is the transition
probability andR is the reward function. At each discrete time t, an agent selects an action
at ∈ A in state st ∈ S, transitions to the next state st+1 with probability P(st+1| st, at),
and receives the immediate reward R(st, at, st+1).

Partial Observable Markov Decision Process (POMDP). Partially Observable
Markov Decision Process (POMDP) is a generalization of a MDP but does not assume
that the state is fully observable and is defined as a 6-tuple (S, A, P, R, O,�), where
S,A,P, and R are the same as that in MDP, with an additional observation space O
and observation model �. Although the underlying state transition in a POMDP is the
same as those in an MDP, the agent cannot observe the underlying state, instead it
receives an observation ot+1 ∈ O when reaching the next state st+1 with the proba-
bility �(ot+1| st+1)�(ot+1| st+1). For POMDPs, since the state s is not observable, the
observation o is used in learning value functions or policy.

Markov Games. Multi-agent extension of Markov Decision Processes is called par-
tially observable Markov Games [12]. In Markov Games, multiple agents interact with
the environment and with each other, and their actions impact the reward structure.
The state transitions and rewards depend not only on the agent’s actions but also on the
actions of other agents. Markov Games incorporate the influence of other agents’ actions
on the environment and rewards, making them more suitable for scenarios involving
cooperation, competition, or coordination among multiple decision-makers.

Actor Critic Methods. Actor-critic methods represent a prominent approach in RL,
bridging the gap between policy-based and value-based methods. While policy based
methods directly parameterize the policy, which is the agent’s strategy for selecting
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actions, and the value basedmethods estimate the value of states or state-action pairs, rep-
resenting the expected cumulative reward the agent can achieve from that state onward, in
the actor-critic framework the actor represents a policy network that outputs a probability
distribution over actions given a state, and the critic is a value network that estimates
the expected return for each state or state-action pair. During training, the actor and
the critic are trained jointly by using the critic’s output as a baseline or a target for the
actor’s gradient update. This way, the actor can learn from both its own experience and
the critic’s feedback.

Deep Deterministic Policy Gradient. The Deep Deterministic Policy Gradient (DDPG)
is a variant of actor-critic algorithms designed for solving continuous action space prob-
lems, where the objective is to learn a deterministic policy that maximizes the expected
cumulative long-term reward [13].As an off-policy algorithm,DDPGuses a replay buffer
to store past experiences from the exploration phase. DDPG also uses target networks for
both the actor and the critic, which are periodically updated with the parameters of the
respective online networks providing smoother and more stabilized estimation during
the training.

Twin Delayed Deep Deterministic Policy Gradient. The Twin Delayed Deep Determin-
istic Policy Gradient (TD3) algorithm is a variant of the DDPG algorithm that addresses
the issue of overestimation of value functions in actor-critic methods, enhancing sta-
bility and sample efficiency [14]. TD3 has demonstrated remarkable performance in
continuous control tasks, specifically in challenging high-dimensional environments.
TD3 algorithm employs two critic networks, each independently estimating Q-values
for the same state-action pair and uses the minimum as the target Q-value during the
update process, leading to more accurate value estimations. Additionally, TD3 intro-
duces target policy smoothing, clipped double Q-learning, and delayed policy updates
contributing to its better performance compared to DDPG.

Long Short Term Memory. LSTM, a type of Recurrent Neural Network (RNN), was
introduced to overcome challenges associated with capturing long-term dependencies
in sequential data [15]. Its unique architecture incorporates a memory cell, input gate,
forget gate, and output gate, effectively addressing the vanishing gradient problem,
and enabling the network to sustain gradients across extended sequences. LSTMs have
found broad applications in natural language processing, speech recognition, and time-
series analysis, gaining recognition for their prowess in modeling intricate sequential
dependencies.

3 Methods

3.1 Multi Agent LSTMTD3

In this study, we present an extension of memory-based actor-critic networks [16] tai-
lored for the multi-agent setting, leveraging the MADDPG algorithm outlined in [17].
Our approach, illustrated in Fig. 1, adopts a framework of centralized training and decen-
tralized execution. During the training phase, the critic network Q, receives additional
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information regarding the policies of other agents, while the learned policies at exe-
cution time by actor network π, are restricted to accessing only local information. This
differential access to information ensures that during training, the policy gains a compre-
hensive understanding of the environment and potential strategies. Our proposedmethod
integrates a memory component wherein both the actor and critic are enhanced with an
LSTMmemory unit. This augmentation facilitates the extraction of relevant information
from past history, which is then combined with the extracted features from the current
observations.

Fig. 1. Overview of the proposed method with decentralized actor centralized critic framework.
a) During the training, the critic has access to the extra information from other agents while during
execution each agent only has access to their own information. b) Both actor and critic incorporate
and LSTM-based memory component in the architecture

In accordance with an off-policy learning setting, the experience replay mechanism
is utilized to store the experienced trajectories, encompassing observations, actions,
rewards, next observations and the done flag at time t. Additionally, this replay buffer
is extended to include a history of paired observations and actions up to time t, with
a predefined length of l as ht = ot−l, at−l, . . . , ot−1, at−1. During the training phase,
a mini batch of S examples

{
hlt, ot, at, rt, ot+1, dt

}
i = 1S

{
hlt, ot, at, rt, ot+1, dt

}

is uniformly sampled from replay buffer D, and the optimization follows that of TD3
algorithm. The pseudo code for the MA-LSTMTD3 algorithm is provided in Algorithm
1. Our implementation code is available at https://github.com/niktaaan/Multi-Agent-
LSTMTD3.

https://github.com/niktaaan/Multi-Agent-LSTMTD3
https://github.com/niktaaan/Multi-Agent-LSTMTD3
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The baselines utilized for comparing the proposed MA-LSTMTD3 are two deter-
ministic algorithms: MA-DDPG and MA-TD3, where policies were evaluated every
1000 episodes, by playing 100 episodes, and averaging the resulting scores. In all exper-
iments, hyperparameters were determined through a random search process to ensure
robustness and generalizability. The following hyperparameters were consistent across
all experiments: training proceeded for 300,000 steps, with the training phase initiated
after an initial 25,000 steps to allow for stabilization. A replay buffer size of 600,000 was
utilized to store past experiences for efficient learning. Each training iteration involved
a batch size of 1024 samples drawn from the replay buffer to update the neural network
parameters. The discount factor was set to 0.99 and tau as the soft update rate was set
to 0.001. Also, the Adam optimizer was employed for optimization in every training
step, utilizing a learning rate of 0.0001. Delay interval of 2 was used for MA-TD3 and
MA-LSTMDTD3, and history length was set to 5 for MA-LSTMTD3 algorithm. Other
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hyperparameters, including the details for network architecture in actor and critic are pro-
vided in Table 1. While DDPG and TD3 utilize fully connected (FC) layers exclusively,
the architecture of LSTMTD3 incorporates amemory extraction block composed of both
FC and LSTM layers, along with separate blocks for current feature extraction and post-
combination. These components are indicated in three rows of layer size specifications
in the table, representing the respective parts of the network architecture.

Table 1. Network parameters.

Layer size Computation Block MA-DDPG MA-TD3 MA-LSTMTD3

Actor Network Memory Extraction
[FC], [LSTM]

– – [128], [128]

Current Feature
[FC]

[256, 256] [256, 256] [128]

Post Combination
[FC]

– – [128]

Critic Network Memory Extraction
[FC], [LSTM]

– – [128], [128]

Current Feature
[FC]

[256, 256] [256, 256] [128]

Post Combination
[FC]

– – [128]

4 Experimental Settings and Results

4.1 Experiments

To assess the efficacy of the proposed MA-LSTMTD3 algorithm, we employed Multi-
agent Particle Environments (MPE) from the Petting Zoo library [18]. MPE offers a
communication-oriented environment where particle agents interact with fixed land-
marks, capable of movement and communication. Our experiments focused on the sim-
ple spread environment, a cooperative navigation setting comprising N agents and N
landmarks, illustrated in Fig. 2, where the agents’ task is to cover all landmarks while
avoiding collisions. Each agent receives a global reward based on its proximity to the
nearest landmark and incurs penalties for collisions with other agents. Our evaluation
encompassed both MDP and POMDP conditions, with a varying number of agents to
account for a range of environmental complexities.

POMDPVersions of the Environment. In the aforementioned environment, we intro-
duced modifications to the observation space, resulting in partial observability versions
of the tasks. Below are detailed explanation of the two versions implemented:
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Fig. 2. Illustration of the simple_spread_v3 task fromMPE, featuring cooperative agents depicted
in blue and static landmarks depicted in black. Agents interact with the environment, while
landmarks remain fixed and cannot be controlled.

Random Sensor Missing. In this version, we introduced partial observability by ran-
domly setting the values of a specified number of sensors in the observation space to
zero. This approach simulates scenarios where agents experience sensor failures or have
access to only a subset of the environment’s sensory inputs.

Random Noise. In this variant, we introduced random noise into the observations sim-
ulating the inherent uncertainty and unpredictability often present in real-world sensor
reading.We conducted experiments in two distinct scenarios each characterized by vary-
ing levels of noise standard deviation. In the first scenario, we incorporated a relatively
low noise standard deviation (std= 0.1), representing minor disturbances or sensor inac-
curacies. In contrast, the second scenario featured a higher noise standard deviation (std
= 0.2), simulating more significant disruptions or uncertainties in the sensor data.

4.2 Results

We evaluated the performance of the MA-LSTMTD3 algorithm in comparison to MA-
DDPG and MA-TD3 across a range of multi-agent settings. This analysis encompassed
fully observable scenarios, as well as various partial observable environments. Results
are reported on different environment sizes with an increase in the number of agents,
presenting an overview of performance ranging from simpler to more complex versions.

The mean rewards at the final training step averaged across four different seeds, ±
the standard error of the mean (SEM), are presented in Table 2 and Table 3 for MDP
and POMDP versions of the environment, respectively. Across all experiments, MA-
LSTMTD3 outperforms MA-TD3 and MA-DDPG for the number of agents of five and
higher.
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Table 2. Mean performance± SEM forMA-LSTMTD3,MA-DDPG, andMA-TD3 on the origi-
nal MDP version of the simple_spread_v3 environment with varying numbers of agents. Numbers
in bold denote cases where our model performed the best, which were usually for most challenging
cases with most agents.

# of Agents MA-DDPG MA-TD3 MA-LSTMTD3

1 −2.9 ± 0.1 −2.7 ± 0.1 −3.7 ± 0.1

3 −74.9 ± 7 −47 ± 2 −58.4 ± 1.2

5 −279 ± 6.3 −151.1 ± 1.6 −149.8 ± 0.5

8 −863 ± 116.2 −357.5 ± 2.9 −347.1 ± 6.6

10 −990 ± 27.8 −555.2 ± 6.8 −537.2 ± 6.5

Table 3. Mean performance ± SEM for MA-LSTMTD3, MA-DDPG, and MA-TD3 on the
POMDP versions of the simple_spread_v3 environment with varying numbers of agents. Numbers
in bold denote cases where our model performed the best, which were usually for most challenging
cases with most agents.

POMDP version # of Agents MA-DDPG MA-TD3 MA-LSTMTD3

Random Sensor Missing (N =
2)

1 −2.7 ± 0.1 −2.6 ± 0.1 −3.6 ± 0.1

3 −72.1 ± 2.2 −47.6 ± 2.1 −57 ± 0.8

5 −292 ± 13.5 −152.6 ± 1.3 −149.1 ± 1.4

8 −717 ± 75.7 −369.5 ± 8.8 −340.1 ± 3.6

10 −1014 ± 70 −553.1 ± 6.4 −513 ± 4.4

Random Noise (std = 0.1) 1 −2.8 ± 0.1 −2.8 ± 0.1 −3.6 ± 0.1

3 −68.8 ± 1.8 −45.1 ± 1.2 −59 ± 1

5 −310.8 ± 33 −151.1 ± 1.3 −149.5 ± 3.4

8 −737 ± 58.7 −364.3 ± 2.9 −340.5 ± 5.6

10 −1384 ± 115 −557.6 ± 5.3 −515.3 ± 9

Random Noise (std = 0.2) 1 −2.8 ± 0.1 −2.8 ± 0.1 −3.6 ± 0.1

3 −69.2 ± 1.8 −48.6 ± 2.2 −59.2 ± 2.7

5 −290.2 ± 8 −152 ± 3.8 −147.3 ± 1.3

8 −708.6 ± 16 −365.5 ± 8.9 −336.7 ± 1.3

10 −939.7 ± 53 −550.4 ± 5.4 −519.1 ± 5.7

Figure 3 illustrates an example of comparison learning curves across four experi-
mental conditions, with a sample number of agents set to five. The plots display learning
curves from timestep 30,000, excluding the effect of initial steps where agents took ran-
domactions solely tofill the experiencebufferwithout anygradient descent optimizations
of the networks.
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Fig. 3. Example learning curves for the purpose of visualizationwith number of agents= 5 across
all experiments. a) fully observable, b) random sensor missing, c) random noise with std = 0.1
and d) random noise with std = 0.2.

5 Conclusions

In this study, we have illustrated the efficacy of augmenting the actor-critic architec-
ture of the TD3 algorithm with LSTM units to enhance performance within cooperative
multi-agent environments. Through experimentation across varying numbers of cooper-
ating agents and different levels of partial observability, we have consistently observed
enhancements in performance compared to the baseline methods in the more intricate
settings featuring a higher number of agents, in specific for those exceeding three. These
findings underscore the capacity of LSTM units to adeptly capture temporal dependen-
cies, thereby facilitating improved anticipation and coordination of actions among agents
over time.

Moving forward, there are a number of opportunities for further exploration and
refinement of this approach. Future investigations may involve extending the analysis
to encompass non-homogeneous agent populations, such as those encountered in adver-
sarial environments, and by implementing in the model biologically inspired learning
rules [19–23]. Furthermore, conducting empirical analyses to examine the dynamics of
encoded information by LSTM units, and elucidating their contributions to enhancing
overall environmental adaptability, represents a valuable direction for future research
and development endeavors.
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