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a b s t r a c t

Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in
auditory cortex. However, any one neuron functions as part of a population whose combined activity
underlies cortical information processing. Here we review some results obtained by recording simulta-
neously from auditory cortical populations and individual morphologically identified neurons, in
urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations
produced structured activity patterns both in response to acoustic stimuli, and spontaneously without
sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli
and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately
100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3
pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative inter-
neurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep
layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient
layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity
fluctuated between “desynchronized” state characterized by low amplitude, high-frequency local field
potentials and a “synchronized” state of larger, lower-frequency waves. Computational studies suggested
that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity
immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-
exciting system model in synchronized states and an approximately linear system in desynchronized
states. We comment on the significance of these results for auditory cortical processing of acoustic and
non-acoustic information.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Experimental studies of neural activity in vivo have historically
focused on the spiking of single neurons. In the auditory cortex,
single-unit recordings have revealed a great deal about how the
firing of individual neurons is modulated by acoustic stimuli.
However, any one neuron functions only as part of a much larger
nd Behavioral Neuroscience,
J 07102, USA.
D. Harris).

All rights reserved.
population whose combined activity underlies an animal’s pro-
cessing of information. Characterizing the structure of neuronal
population activity, and its relationship to sensory stimuli, is a key
step toward understanding how information is processed in audi-
tory cortex. Over the last decade or so, technological advances such
as the development of tetrodes, silicon microelectrode arrays, and
spike-sorting techniques have allowed for recording the activity of
up to hundreds of neurons simultaneously in vivo. Although these
techniques were first developed for use in the hippocampus
(Csicsvari et al., 2003; Harris et al., 2000; McNaughton et al., 1983;
Recce and O’Keefe, 1989; Schmitzer-Torbert et al., 2005), they can
be used in many other brain structures (Bartho et al., 2004; Berke
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et al., 2004; Felsen andMainen, 2008; Gray et al., 1995; Luczak et al.,
2007; Ranade and Mainen, 2009). This article reviews some recent
research using microelectrode arrays to study the activity of neural
populations within auditory cortex.Wewill discuss: the structure of
population spiking activity in auditory cortex; the relation of sound-
evoked to spontaneous activity; the organization of this activity
across cortical layers; and its modulation by brain state.

2. Spontaneous activity in auditory cortex

A classical view of sensory cortex is that neural activity is driven
by external stimuli. Although neurons in sensory cortices do fire
action potentials without stimuli (e.g. in silence or darkness for
auditory and visual cortices, respectively), this is usually considered
“baseline” activity. Analysis of this spontaneous activity usually
consists simply of calculating the “baseline firing rate” for each
neuron (i.e. its mean rate prior to stimulus presentation), which is
then used as a comparison point for sensory responses. Based on
this knowledge alone, one might imagine that in the absence of
sensory stimuli, all neurons fired tonically at baseline rate, corre-
sponding to globally unstructured population activity. This,
however, is not always the case. While cortical background activity
can be unstructured (even in recurrent neural circuits with strong
and dense shared inputs; see section on brain states below), it can
also display highly structured population activity even in the
absence of sensory stimuli (Fig. 1; Renart et al., 2010).

The structure of cortical population activity is intimately related
to a well studied neural signal, the local field potential (LFP). LFP
reflects synaptic currents rather than spiking activity, and the LFP at
Fig. 1. Structured spontaneous activity in auditory cortex. Raster plots show activity of si
recorded from the subset of the channels from which spikes were detected. Bottom black
recorded cells. Red rectangles indicate “downstates,” i.e. periods of global network silence. Gr
(A,B) show two periods from a single recording under urethane anesthesia, (C,D) show two
activity is seen in all cases, but that the nature of this activity (such as the length of downsta
any laminar position reflects a complex summation of currents
across produced by multiple inputs onto cells of all layers (Einevoll
et al., 2007; Kandel and Buzsaki, 1997; Mitzdorf, 1985; Schroeder, in
this issue). Nevertheless, there is a robust correlation between the
LFP and local population activity (Katzner et al., 2009). In general,
deep layer LFP anticorrelates with the instantaneous firing rate of
the local population, with negative LFP deflections at times of
increased firing rate (Fig. 1). This phenomenon occurs in multiple
sensory cortices, and LFP also correlates negatively and robustly
with neuronal membrane potentials (Poulet and Petersen, 2008).
Cortical LFP, and its relation to behavior, has been intensely studied
for decades (see e.g. John et al., 1973; Vanderwolf, 2003). Thus, even
though the ability to record neural populations is relatively recent,
earlier studies of LFP provide important, if indirect, information
about the structure of population activity.

The structure of spontaneous cortical activity varies with brain
state, which itself varies according to behavioral and cognitive
conditions (Steriade et al., 1993a, 2001; Vanderwolf, 2003). Spon-
taneous activity is often dominated by slow (w<4 Hz) fluctuations
in global activity levels, with the firing rates of simultaneously
recorded neurons increasing and decreasing together in a manner
that correlates with ongoing slow LFP oscillations (as illustrated in
Fig. 1). These global fluctuations are often characterized by tran-
sient periods in which almost none of the recorded neurons fire,
typically accompanied by dome-shaped positive deflections in the
deep layer LFP and hyperpolarization of membrane potentials. The
length of these periods varies with brain state, ranging from several
seconds under certain anesthetic conditions (Steriade et al., 1993b),
to as short as tens of milliseconds in awake quiescent animals
multaneously recorded layer 5 neurons, blue traces show local field potentials (LFP)
trace indicates multi-unit activity (MUA), i.e. the population-averaged firing rate of all
een traces show sync pulses, with positive values indicating times of tone presentation.
periods in a passively listening unanesthetized animal. Note that structured population
tes) is variable both between and within recordings. Adapted from Luczak et al. (2009).
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(Luczak et al., 2009, 2007; Poulet and Petersen, 2008). Here we use
the terms “downstate” to describe such periods of network inac-
tivity, and “upstate” for the alternative periods, where the network
is spontaneously active (but note that some authors reserve these
terms for the long periods of hyperpolarization and depolarization
seen in anesthesia and sleep).

3. The vocabulary of neuronal populations

In principle, the number of spatiotemporal patterns that could
be produced by even a small number of neurons is astronomical.
How much of this potential capacity is actually realized? To
investigate this, Luczak et al. (2009) analyzed the structure of the
initial (100 ms) component of auditory cortical responses to tones
and natural sounds, and spontaneous upstates.

3.1. Constraints on spike timing are preserved across spontaneous
and sensory-evoked conditions

To investigate the constraints on the spike patterns expressible
by a neuronal population, we recorded simultaneously from 40 to
100 neurons in layer 5 of rat auditory cortex using silicon micro-
electrodes. Experiments were conducted in urethane-anesthetized
and unanesthetized passively listening rats. In response to tone
stimuli, individual neurons showed diverse but consistent temporal
firing profiles, indicating that tone presentation causes a stereo-
typed spatiotemporal activity pattern in the recorded population
(Fig. 2). To test whether different sensory stimuli induce similar
sequential patterns at onset, we also analyzed the response of the
same population to multiple natural sound stimuli (insect vocali-
zations). Examination of individual neuron and population
responses revealed timing patterns homologous to those evoked by
tone presentation, suggesting that responses to natural sounds are
constrained to a similar sequential ordering (Luczak et al., 2009).
Spontaneous patterns also showed a similar sequential structure as
sensory responses. Individual neurons showed similar temporal
relationships of their spiking activity to upstate onsets as they did
to sensory stimuli, revealing a similar sequential structure at the
population level (Fig. 3).

To statistically verify these observations, we computed
ameasure mcc of each neuron’s position in a firing sequence, defined
as the center of mass of its cross-correlogram with the summed
activity of all other neurons, computed in the first 100 ms after the
onset of each event type (Luczak et al., 2009). Values of mcc were
strongly correlated between stimulus classes, demonstrating that
the order of neural firing is consistent between sensory stimuli, as
well as spontaneous events (Rureth: ton-nat ¼ 0.69 þ 0.21, N ¼ 5 rats;
Rureth: spont-ton ¼ 0.6 þ 0.14; Rureth: spont-nat ¼ 0.57 þ 0.18; Runanesth:

spont-ton¼ 0.53þ 0.17; numbers give meanþ s.d.; p< 0.001 for each
dataset; Luczak et al., 2009). We thus concluded that the possible
sequential firing orders that a given cortical populationmay exhibit
e either spontaneously or in response to sensory stimuli e are
highly constrained. Similar relationships between constraints on
spontaneous and evoked firing sequences have also been observed
in somatosensory and visual cortices (Jermakowicz et al., 2009;
Luczak et al., 2009)

At first this result might appear to contradict previous findings
obtained from single-cell recordings, which have demonstrated
that neuronal latencies may vary between stimuli, typically being
shortest for a neuron’s preferred stimulus (Heil, 2004; Oram et al.,
2002). We also observed this phenomenon; however, the vari-
ability of latencies across stimuli for a single neuron was typically
much smaller than the variability of latencies across neurons for
a single stimulus (Luczak et al., 2009), causing little perturbation of
the overall sequential structure. Although temporal response
profiles would be expected to vary between cortical areas and
layers (see below), the diversity we observed did not simply reflect
this, as diverse temporal profiles were observed even amongst
neighboring neurons recorded from the same tetrode (Luczak et al.,
2009, 2007). Heterogeneity of neighboring A1 neurons has also
been reported by recent optical imaging studies of frequency
tuning (Bandyopadhyay et al., 2010; Rothschild et al., 2010). Thus,
even though auditory cortex has large-scale organization in the
form of tonotopy and inter-area differences, presentation of even
a pure tone sets off a complex dynamic pattern of spiking activity
spanning large regions of auditory cortex, whose spatial and
temporal structure determined by local circuit properties as well as
tonotopy and areal structure.

The finding that auditory cortical neurons show complex
temporal dynamics, including delayed onsets and sustained firing
during tone presentation, is consistent with reports of previous
single-cell recordings in awake, ketamine-, halothane- or barbitu-
rate-anesthetized subjects (Moshitch et al., 2006; Sally and Kelly,
1988; Volkov and Galazjuk, 1991; Wang et al., 2005) but contrasts
with other reports using barbiturates or ketamineexylazine (e.g.
deCharms and Merzenich, 1996; DeWeese et al., 2003), which have
suggested precisely timed firing of sometimes only one spike at
onset, but not sustained rate changes. We have not conducted
a systematic analysis of the effects of different anesthetics on
temporal patterns responses. However our results, together with
previous studies, suggest that while some anesthetic conditions
might suppress sustained responses and complex temporal
response patterns, the absence of auditory cortical sustained
responses is not a consequence of anesthesia per se, but only of
certain anesthetic/stimulus conditions.

3.2. Constraints on firing rate patterns are preserved across
spontaneous and sensory-evoked conditions

We next asked whether the possible combinations of firing rates
expressible by the population are also subject to common
constraints across various stimuli and spontaneous events. For this
analysis we discarded temporal information, and summarized each
population pattern by a vector containing the firing rates of each
recorded neuron during the first 100 ms after stimulus or upstate
onset.

To gain insight into the nature of constraints on firing rates, we
initially focused on cell pairs. Fig. 4A illustrates, for one pair of cells,
the number of spikes fired in individual upstates (black dots),
responses to a representative tone (green), and responses to
a natural sound (red). The region occupied by upstate spike counts
has a triangular shape, suggesting a constraint on possible spike
count combinations: if neuron 2 fired in any given upstate, neuron
1 almost always fired also. The regions occupied by the responses to
the two stimuli differed, but both fell within the region outlined by
the set of spontaneous events. Fig. 4B shows, in outline view, the
regions occupied by responses to the two stimuli and spontaneous
upstates, and a set of vectors in which spike count correlations had
been destroyed by shuffling (spontaneous spike counts were
shuffled for each neuron separately, preserving each cell’s firing
rate distribution but enforcing independence between neurons).
Part of the realm of shuffled responses (marked in gray) is not
occupied by either spontaneous or evoked responses, indicating
that these spiking combinations are not produced by the circuit.

We next asked whether a similar phenomenon occurs at the
level of the full spike count vectors. Visualization of high-dimen-
sional data requires techniques to map this data into two dimen-
sions. We used multidimensional scaling (Kruskal and Wish, 1978),
a nonlinear method whereby points which are close in the original
high-dimensional space will also be placed close together in the 2D



Fig. 2. Sequential population activity patterns. Representative raw data plots, showing responses to five tones (3, 7, 12, 20, 30 kHz respectively) and five different natural sounds
(insect vocalizations), together with spontaneous activity patterns seen after stimulus offset, taken from a single recording under urethane. The green line indicates the duration of
the stimulus; blue traces show local field potentials from one of the recording sites; underneath is a raster plot showing the spike trains of simultaneously recorded neurons.
Neurons are sorted vertically by average spontaneous mean spike latency to reveal sequential firing patterns (unlike Fig. 1, where they were arranged by recording shank). Neurons
are displayed in the same vertical order in all plots. Although population firing events can vary significantly in firing rate and duration, stereotyped sequential patterns of timescale
w100 ms typically accompany evoked and spontaneous population spiking events, as well as occurring during the presentation of extended tones and natural sounds. Adapted from
Luczak et al. (2009).
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projection (Fig. 4C and D) (see also Gerstein et al., 1985). It can be
seen that each stimulus produces response vectors that occupy
a specific regionwithin the realm outlined by spontaneous activity,
which is itself contained in the realm outlined by shuffled patterns.
To quantitatively verify this, we compared the distance from each
evoked event to its nearest neighbor in the set of spontaneous
events, with the distance to its nearest neighbor in the set of
shuffled spontaneous events (all distances computed in the full
space of spike count vectors, not the 2D projection). The set of
shuffled events was created by randomly reassigning neuronal
responses between spontaneous events, and so represents the set
of firing patterns the population could produce if there were no
relationships between the spike counts of different neurons. This
space contains the set of original unshuffled events, but is larger,
and the same number of events therefore fills it with a lower
density. Thus, if sensory responses occupy the same subspace as
spontaneous events, the distance from a sensory response to its
nearest neighbor in the shuffled events should be larger than to its
nearest neighbor in the set of unshuffled events. Statistical tests
confirmed that this was indeed the case (Fig. 4EeG; Luczak et al.,
2009). Thus, spike count vectors accompanying spontaneous
events occupy only a small region of the space of possible rate
vectors, with the responses to individual sensory stimuli lying
within this “allowed region.”

In summary, for the initial period of sensory responses, both the
combinations of cells that can fire and the possible orders in which
they can fire are subject to constraints that are preserved across
stimuli. Similar constraints also apply to the population patterns



Fig. 3. Preservation of sequential structure between sensory-evoked and spontaneous events in unanesthetized animals. (A,B) Representative raw data plots from an unanes-
thetized, head-fixed subject in a passive listening paradigm. (C,D) Top two rasters (black ticks) show spike times for two individual neurons, triggered by tone onsets (C) and upstate
onsets (D). Bottom panels show average activity of all simultaneously recorded neurons triggered by tone or upstate onsets: grey bars show pseudocolor representations of each
neuron’s perievent time histogram (PETH), red dots denote each neuron’s mean spike latency in the 100 ms after tone onset. Neurons are ordered vertically by the mean latency
over all stimuli, to illustrate sequential spread of activity. Neurons are sorted in the same order in C and D, to illustrate the similar sequential order of tone-evoked and spontaneous
activity. (E) Conservation of latency measure mcc across tones and spontaneous events. Adapted from Luczak et al. (2009).
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occurring at the start of spontaneous upstates. This result raises
a question: are spontaneous and sensory-evoked patterns so
similar as to be identical (and thus indistinguishable to down-
stream neurons)? The above findings were all based on recordings
from a single layer, cortical layer 5; as we will see later, there are
differences in how spontaneous and evoked activity is organized
across layers.

4. Vector evolution of tone responses

Even though the spatiotemporal responses of neuronal pop-
ulations are subject to conserved constraints, responses to different
stimuli are not identical. To investigate how population responses
differ between tone stimuli, Bartho et al. (2009) used an approach
based on the firing rate vector (Laurent, 2002; Stopfer et al., 2003),
a representation f of the mean rate across trials of a population of N
cells, as a point in an N-dimensional space. Considering the
dependence of this vector on time, one obtains a trajectory f(t) that
characterizes the dynamics of the population rate e that is,
a description of how it evolves during stimulus presentation.
Although this approach cannot capture trial-to-trial variability and
noise correlation, it provides information about how mean
responses vary between stimuli, and allows the use of geometrical
concepts that can help to understand the operation of neural
populations. Furthermore, because the method characterizes the
mean response to a stimulus rather than inter-neuronal relation-
ships on individual trials, it allows analysis of very large “virtual
populations” obtained by pooling cells recorded in multiple
experiments (see Harris, 2005 for further discussion of real vs.
virtual populations).

Fig. 5A1 shows trajectories evoked by 1 s long pure tones, viewed
using principal component analysis (PCA) to project onto the two
dimensions accounting for the maximum fraction of total variance.
The most striking feature of this plot is the similarity of trajectories
for different tone stimuli. Onset responses were seen in this projec-
tion as a circular trajectory that was largely independent of tone
frequency. Sustained responses were barely distinguishable from
baseline firing in this projection, and offset responses again showed
circular profiles, broadly similar between tone frequencies, but
different to those seen at onset. Cells contributing the most to this
projection had prominent onset and offset responses, but barely any
sustained responses (Fig. 5A2). The similarity of trajectories
produced by different tone frequencies likely results from the
conserved constraints described earlier. Fig. 5B1 shows trajectories
projected onto two dimensions using a different method, multiple
discriminant analysis, to select the projection optimizing the sepa-
ration of sustainedfiring rates. In this projection sustained responses
were clearly distinguishable from baseline and from each other. The
PCA andMDA projections provide two views of the same underlying
reality: although similarities between responses to different stimuli
dominate the PCA projections (which pick the directions of
maximum variance, without reference to the underlying stimuli),
MDA reveals that information about stimuli is indeed present, but
must be extracted using an appropriately chosen projection.

The visualization analysis suggested that presentation of tone
stimuli caused rate vectors to rotate in a manner broadly similar
across tones, leading to fixed points which differ from the onset
trajectories of the same stimulus, and are also distinct between
different stimuli. In principle, rotation is not the only way that rate
vectors could evolve during sustained stimuli: if the dynamics of
tone responses consisted only of firing rate adaptation, and the
firing rate of all neurons adapted at the same rate, vectors would
shrink linearly throughout the tone time course, but not rotate
(Fig. 6A). To characterize population vector rotation, we performed
an analysis of the angles between rate vectors. For a particular
reference vector, observed in response to a stimulus s0 at post-



Fig. 4. Combinatorial constraints on population firing rate vectors. (A) Spike counts of two neurons (recorded from separate tetrodes) during the first 100 ms of spontaneous
upstates (black), responses to a tone (green), and natural sound (red). Data were jittered to show overlapping points. Note that regions occupied by responses to the sensory stimuli
differ, but are both contained in the realm outlined by spontaneous patterns. (B) Contour plot showing regions occupied by points from (A). The blue outline is computed from spike
counts shuffled between upstates, indicating the region that would be occupied in the absence of spike count correlations. (C) Firing rate vectors of entire population, visualized
using multidimensional scaling; each dot represents the activity of 45 neurons, nonlinearly projected into two-dimensional space. (D) Contour plot derived from multidimensional
scaling data, with responses to individual stimuli marked separately. Sensory-evoked responses again lie within the realm outlined by spontaneous events. (E) Scatter plot showing
the Euclidean distances from each evoked event to its closest neighbor in the spontaneous events (Espont), and in the shuffled spontaneous events (Eshuf). Dashed red line shows
equality. (F,G) Histogram showing the difference between distances to shuffled and spontaneous events (EshufeEspont). Top and bottom: data from all anesthetized and unanes-
thetized experiments, respectively. Almost every evoked event was closer to a true spontaneous vector than to a shuffled vector. Adapted from Luczak et al. (2009).
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stimulus time t0, the angle between the reference vector fs0 ðt0Þ and
all other vectors fs(t) was computed, after subtraction of the
baseline firing rate vector f. Fig. 6B shows four examples of this
analysis. Responses to different frequencies, but at the same time
(e.g. onset vs. onset) are closer in angle than responses to the same
frequency at different times. Statistical analysis confirmed that the
transition between onset and sustained responses consists of
a nonlinear population vector rotation, and that the angular
difference between responses to the same tone at different times
exceeds the difference between different tones at the same time
(Bartho et al., 2009). This is consistent with the results of the
previous section: if the set of neurons that can fire at early times
differs to the set that can fire at late times, one would expect that
population vectors corresponding to different post-stimulus times
could not be similar, even for the same tone frequency.
5. Laminar organization of cortical population activity

The six-layered structure of the neocortex is one of the most
prominent features of the mammalian brain. Although investiga-
tions of the “circuit diagram” of auditory cortex are still ongoing
(Barbour and Callaway, 2008; Oswald and Reyes, 2008, 2009),
auditory cortical laminar organization appears to follow a broadly
similar pattern to other sensory areas (Linden and Schreiner, 2003),
despite some differences such as the absence of spiny stellate cells
in layer (L)4 (Smith and Populin, 2001). Primary thalamic afferents
in auditory cortex show a bias toward lower L3 and L4, and the L5/6
border (Kimura et al., 2003; Romanski and LeDoux, 1993; Winer
and Lee, 2007). The thalamus, however, is not the only source of
input to auditory cortex; another major input to primary auditory
cortex consists of “feedback” projections from higher order cortical



Fig. 5. Visualization of population firing rate vectors. The panels show projections of the mean firing rate vector trajectory of 282 cells pooled from 4 experiments, evoked by tones
of three frequencies, plotted for increasingly longer time periods from left to right. (A1) Trajectories viewed with principal component analysis (PCA), which finds the projection of
maximum variance; all three plots are in the same projection. In this projection, onset responses are dominant. (A2) PSTHs of the five cells contributing most to the PCA projection.
Arrows above each PSTH indicate factor loadings in the projections above. (B1) Trajectories viewed with multiple discriminant analysis (MDA), to maximize the differences between
sustained responses. In this projection, onset, sustained, and offset responses have approximately equal magnitude. Dashed circles: baseline activity, dotted circles: sustained
activity. (B2) PSTHs of the five cells contributing most to the MDA projection. Arrows as in A2. Adapted from Bartho et al. (2009).
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regions, which project heavily to deep layers (Felleman and Van
Essen, 1991; Rouiller et al., 1991).

To study the laminar organization of auditory cortical activity,
Sakata and Harris (2009) used large-scale extracellular recordings
using silicon probes and juxtacellular recordings with neurobiotin-
filled pipettes (Pinault, 1996), in urethane-anesthetized and
unanesthetized rats. The juxtacellular electrodes yielded record-
ings of single morphologically reconstructed neurons, whose
activity could be analyzed in the context of a larger population of
unreconstructed neurons recorded simultaneously with the silicon
probes. Although the juxtacellular recordings did not yield a large
enough number of morphologically identified interneurons (INs) to
perform statistical analyses, putative INs could be identified in the
silicon probe recordings by spike waveform.
5.1. Similarities in the laminar sparseness profile of sensory-evoked
and spontaneous activity

One striking similarity between auditory-evoked and sponta-
neous activity concerned the sparseness of activity of different cell
types. As shown in Fig. 7AeB, L2/3 pyramidal cells (PCs) exhibited
highly selective responses to stimuli, in both the spectral and
temporal domains, while L5 thick PCs (L5 tPCs) were broadly tuned
to both stimuli. L4 PCs and L5 slender PCs (L5 sPCs) were inter-
mediate between two classes. Intriguingly, L6 PCs showed strik-
ingly different response profiles than other classes, typically
without clear frequency-tuned responses, but sometimes
responding to tones and clicks after aw200ms delay. The tuning of
putative INs also differed from that of PCs, with superficial putative



Fig. 6. Population vector rotation. (A) Schematics of hypotheses tested in this figure. Hypothesis I: the population vector in the sustained period is a linearly scaled version of that at
stimulus onset. Hypothesis II: both the magnitude and direction of the population vector changes. (B1) Pseudocolor plot showing the angle in degrees between the mean population
firing rate vectors for all times and tone frequencies, and a reference vector produced by a 14.4 kHz tone during stimulus onset (indicated by the arrow). The reference vector is more
similar to onset response vectors for other frequencies, than to sustained responses for the same tone. (B2) Similar analysis for a reference vector computed during the sustained
response, here showing greater similarity to sustained responses of other stimuli, than to onset responses to the same stimulus. (B3-4) Same as B1-2, with 27 kHz tone response as
reference. Adapted from Bartho et al. (2009).
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INs showing broader tuning, more similar to deep PCs than to
superficial PCs (Fig. 7C). We confirmed this impression with
a “response probability” measure, defined as the probability that
a neuron would fire at least one spike in response to any given
stimulus presentation (Fig. 7E). L2/3 and L6 PCs showed sparsest
activity (i.e. lowest response probabilities), and L5 tPCs showed the
densest activity (i.e. highest response probabilities). Putative INs of
both superficial and deep layers showed response probability
similar to that of deep PCs rather than superficial PCs. Thus, we
found clear laminar and cell-type-dependent differences in audi-
tory responses, with sparse activity in L2/3 PCs, and denser activity
in larger L5 PCs and putative INs. These results are generally
consistent with other recordings in multiple sensory cortices, that
have identified neuronal classes using multiple methods (Brecht
et al., 2003; Brecht, 2007; de Kock et al., 2007; Sohya et al., 2007;
Swadlow, 1988, 1989, 1994; Turner et al., 2005; Wallace and
Palmer, 2008; Wu et al., 2008; Zhou et al., 2010) (but see also
Hromadka et al., 2008).

We next askedwhether similar patterns of sparseness also apply
to spontaneous activity patterns. We began by examining patterns
of multi-unit activity (MUA), recorded with linear multisite elec-
trodes (Fig. 7D). Some, but not all upstates visible in deep layers
were accompanied by activity in the immediately overlying
superficial layers. To investigate the participation of different
identified cell classes in upstates, we again used a response
probability measure, here defined as the probability a cell would
fire at least one spike in any given upstate (Fig. 7F). A similar pattern
of sparseness was seen as for auditory responses, with L2/3 and L6
PCs showing the lowest response probability, and L5 tPCs the
highest. Response probability was correlated on a cell-to-cell basis
between spontaneous and auditory-evoked activity (Fig. 7G), sug-
gesting that consistent variations in sparseness both between and
within cell classes were preserved in spontaneous and evoked
activity.

The results described above focused on the properties of indi-
vidual neurons, but not the organization of activity across multiple
columns. For example, sparse firing of superficial PCs could reflect
either activation of localized clusters in discrete points on the
cortical surface, or sparse activation of neurons distributed over
a wide area. Because primary auditory cortex is tonotopically
organized, we expected that for tone responses, activity should be
spatially localized; furthermore, it has been reported that both
evoked and spontaneous auditory cortical correlations increase
with similarity of receptive fields (Brosch and Schreiner, 1999;
Eggermont, 2006). We addressed this issue using spike-sorted
extracellular population activity recorded frommulti-shank silicon
probes. Visual examination of rasters suggested spiking activity in
superficial layers to be locally clustered, for upstates as well as
responses to tones and clicks (Sakata and Harris, 2009); in deep
layers activity was more broadly spread for all types of activity. The



Fig. 7. Cell-type-dependent sparseness of population activity. (A) Examples of five juxtacellularly recorded pyramidal cells (PCs), digitally superimposed. (B) Spectral tuning of the
neurons shown in (A). Each plot shows a pseudocolor representation of the cell’s mean firing rate in a 50 ms period following tone onsets, as a function of tone frequency and
intensity. The number above each plot indicates maximum firing rate. L5sPC, L5 slender PC; L5tPC, L5 thick PC. (C) Tuning of four representative cells identified from silicon probe
recordings. Left, schematic drawing of electrode, and average spike waveform profiles of a putative deep PC, superficial PC, deep interneuron (IN), and superficial IN. Right, spectral
tuning of these cells. (D) Left, schematic drawing of recording by a 32-site linear electrode. Right, raster plot of multi-unit activity (MUA) for each channel, superimposed on local
field potentials (gray traces). (E,F) Sparseness of evoked and spontaneous activity was assessed using a “response probability” measure, for which smaller values indicate sparser
firing. Bars above and below dotted line indicate cell classes identified morphologically by juxtacellular recording (“juxtacells”), and silicon probe-recorded units putatively
classified by spike waveform (“extracells”), respectively. Asterisks denote pairwise post-hoc lsd tests, indicating a significant difference (p < 0.05) to the class corresponding to that
color. Post-hoc comparisons were performed for juxtacells and extracells separately. sP, superficial PCs; dP, deep PCs; sI, superficial INs; dI, deep INs. Error bars indicate SE. (G)
Sparseness is correlated between sensory responses and upstates. Each symbol shows the response probability of one cell to tones and upstates, with large symbols indicating
juxtacells. Adapted from Sakata and Harris (2009).
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structure of neuronal correlations bore this out: in superficial
layers, correlations were stronger for local than distal pairs, while
in deep layers, therewere only subtle differences between local and
distal correlations. We note that this picture of superficial layer
activity is further supported by a recent in vivo calcium imaging
study (Rothschild et al., 2010).
5.2. Differences in the propagation of sensory-evoked and
spontaneous activity

The above analyses showed that the pattern of sparseness across
cortical cell classes was similar between evoked and spontaneous
activity. However, we also observed a clear difference between
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these two types of events in the propagation of activity between
layers and columns (Fig. 8).

Fig. 8A shows examples of laminar MUA traces during successive
evoked and spontaneous spiking events. At the onset of auditory
responses, activity originated in the uppermiddle and a part of deep
layers. These layers correspond to the presumptive locations of
strongest inputs from primary thalamus (Kimura et al., 2003), and
also match the locations of early current sinks revealed by current
source density (Kaur et al., 2005; Sakata andHarris, 2009; Szymanski
et al., 2009), as well as unit recordings in other species such as cats
(Atencio and Schreiner, 2010) and guinea pigs (Wallace and Palmer,
2008). Activity at upstate onsets, however, was first seen in the
deep layers and spread upward, more closely resembling the prop-
agation of spontaneous upstates in in vitro slice models (Sanchez-
Vives and McCormick, 2000) than the propagation of sensory
responses. We quantitatively confirmed the difference between
these patterns with a “peak latency” measure, defined as median
MUA spike time in a 50mswindowafter event onset, as a function of
putative laminar location (Fig. 8B). Similar results have recently been
reported in multiple areas of cat cortex (Chauvette et al., 2010).

To investigate the spatial spread of activity across both cortical
layers and columns, we next employed a different experimental
Fig. 8. Difference in propagation of activity across cortical layers and columns. (A) Example
on a 32-site linear probe for individual upstates and evoked responses. Shaded periods indic
spike time in a 50-ms window after event onset. (B) Laminar profiles of peak latency for t
a pseudocolor histogram of the distribution of peak latency as a function of depth. (C) Two-
auditory cortex. A part of the drawing was replicated from (Paxinos and Watson, 1997). (D,E
Each plot shows rasters of MUA on all recording sites, with superficial and deep shanks on t
Distribution of propagation speeds for upstates (top) and evoked responses (bottom), estima
the median, and the x-axis is log-scaled. Propagation speed was faster for evoked respon
Hypothesized flow of sensory-evoked and spontaneous activity through auditory cortical c
spheres representing PCs and INs, respectively. Colored symbols represent active neurons.
approach (Fig. 8C), in which multisite electrodes were inserted
parallel to the layers of auditory cortex. Fig. 8D and E show exam-
ples of MUA traces recorded with this approach, for upstates and
evoked responses, respectively. Activity was more spatially local-
ized in superficial than in deep layers, which is consistent with the
cell-type-dependent activation across layers (Fig. 7). However, the
speed with which activity spread across recording sites was on
average faster for evoked events than for upstates, consistent with
the tendency for the latter to sometimes propagate as “traveling
waves” (Luczak et al., 2007; Petersen et al., 2003) (Fig. 8F). These
laminar structures of population activity held under both anes-
thetized and unanesthetized conditions (Sakata and Harris, 2009).
Thus, the propagation of spontaneous and evoked activity differed,
with spontaneous activity spreading upward from deep layers and
slowly across columns, but sensory responses initiating in
presumptive thalamorecipient layers, spreading rapidly across
columns (Fig. 8G).

6. Brain states

The structure of cortical spontaneous activity is not constant,
but varies frommoment tomoment according to the overall state of
laminar profiles of upstates and evoked responses. Rasters indicate MUA of all channels
ate tone presentations. Red dots indicate “peak latency,” computed as the median MUA
one-evoked responses (best frequency, 60e80 dB SPL) and upstates. The graphs show
shank multisite electrodes (2 � 16 linear probe) were inserted parallel to the layers of
) Examples of spatiotemporal patterns for upstates (D) and click-evoked responses (E).
op and bottom. The sites on each shank are arranged from dorsal (D) to ventral (V). (F)
ted as the regression slope of median MUA time across recording sites. Arrows indicate
ses than for upstates in both layers (ANOVA with post-hoc lsd test, p < 0.0001). (G)
ircuits. Each sheet represents a population of the corresponding layer, with cones and
Adapted from Sakata and Harris (2009).
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the cortex. A classical view holds that cortical state is a function of
the sleep cycle: during waking or rapid eye movement sleep, the
cortex operates in the desynchronized (or activated) state, charac-
terized by low amplitude, high-frequency LFP patterns; during
slow-wave sleep, the cortex operates in the synchronized (or inac-
tivated) state, characterized by larger, lower-frequency LFP fluctu-
ations corresponding to an alternation of upstates of generalized
activity and downstates of network silence.

In addition to the major changes that occur with the sleep cycle,
there are gradations in brain state during waking. In quietly resting
rodents, cortical activity shows an intermediate pattern in which
downstates of reduced length and depth are observed (Fig. 1;
Luczak et al., 2009, 2007; Petersen et al., 2003; Poulet and Petersen,
2008). Brain state is controlled by many factors including the
activity of ascending neuromodulatory systems, that vary not just
with the sleep-wake cycle but also with behavioral and cognitive
variables, that are also associated with changes in LFP and EEG
power spectra, and in the size of spiking correlations and global
activity fluctuations (Buzsaki et al., 1988; Cohen and Maunsell,
2009; Fries et al., 2001; Mitchell et al., 2009; Pesaran et al., 2002;
Poulet and Petersen, 2008; Wiest and Nicolelis, 2003). High-
frequency LFP power and synchrony increase, while low-frequency
power and correlations decrease in conditions of attention, effects
that can occur even locally within receptive fields in the visual
system (Cohen andMaunsell, 2009; Fries et al., 2001; Mitchell et al.,
2009). High-frequency LFP power is also positively correlated with
the fMRI BOLD signal (Logothetis et al., 2001), suggesting that levels
of desynchronization may vary across the cortex in a task-depen-
dent manner, similarly to the BOLD signal itself. The relationship
between spontaneous activity in sensory cortices, and ongoing
cognition and behavior, is likely to in turn affect the cortical
response to incoming sensory stimuli (Haider et al., 2007;
Hasenstaub et al., 2007; Lakatos et al., 2007). Spontaneous neural
activity has been suggested to underlie processes such as mental
imagery during waking (Kosslyn et al., 2001; Kraemer et al., 2005;
Kreiman et al., 2000), and the reactivation and consolidation of
memories during sleep (Buzsaki, 1989; Hoffman and McNaughton,
2002, 2007).

Under anesthesia, the cortex usually operates in the synchro-
nized state. However, under urethane, desynchronized periodsmay
occur spontaneously, be induced by a tail pinch or electrical stim-
ulation of areas such as the pedunculopontine tegmental nucleus
(Clement et al., 2008; Vanderwolf, 2003). This has led to the
widespread use of urethane anesthesia as a model to study the
effects of brain state on cortical processing (Castro-Alamancos,
2004b; Goard and Dan, 2009; Murakami et al., 2005). Even
though the anesthetized cortex undoubtedly functions differently
to the unanesthetized cortex, a variety of brain states can thus be
found both within and without anesthesia. Conversely, cortical
desynchronization is not necessary for behavioral consciousness, as
evidenced by the presence of synchronized LFP patterns in actively
behaving rats after blockade of neuromodulatory systems
(Vanderwolf, 2000). While state-dependence of LFP patterns was
established by classical studies (Vanderwolf, 2003), more recent
work has shown that population spike patterns show similar state-
dependence, with spontaneously population activity in the acti-
vated state showing no global fluctuations and extremely lowmean
neuronal correlation. Remarkably, this can happen despite the
strongly recurrent nature of cortical circuitry, which theoretical
analyses suggest occurs because fluctuations arising from shared
inputs are rapidly quashed by rapid inhibitory feedback (Renart
et al., 2010).

A number of studies have shown that brain state can affect not
just ongoing spontaneous activity but also sensory responses, in
auditory as well as other cortices (Castro-Alamancos, 2004b;
Edeline, 2003; Kisley and Gerstein, 1999; Worgotter et al., 1998).
To investigate how brain state and spontaneous activity can influ-
ence auditory cortical population responses to acoustic stimuli,
Curto et al. (2009) recorded population activity together with local
field potentials (LFPs), from layer 5 of auditory cortex of urethane-
anesthetized rats. We recorded both spontaneous and click-evoked
activity across a range of synchronized and desynchronized states,
and focused our analysis on smoothed multi-unit activity (MUA)
obtained by pooling together all spikes from simultaneously
recorded neurons.

6.1. Global structure of population activity in auditory cortex

We began by visualizing how click responses vary with cortical
state. First, we have to distinguish two slightly different uses of the
word “state,” corresponding to two different timescales. We shall
refer to the state of the cortex, in the sense of the dynamics of
network activity on a timescale of seconds or more and as reflected
in the LFP power spectrum, as its dynamic state; the synchronized
and desynchronized states are examples of dynamic states. The
word “state” is also used to refer to fluctuations in instantaneous
network activity at timescales of the order hundreds of millisec-
onds, as in the case of “upstates” and “downstates.”Wewill use the
term activity state to describe cortical states that persist on these
shorter timescales.

To illustrate how sensory responses can depend on activity state
at the time of stimulus presentation, Fig. 9a shows population
activity before and after six presentations of a click stimulus in
a recording that was consistently in the synchronized state. In
somatosensory cortex, whisker stimulation can “flip” neural
activity from downstate to upstate and vice versa (Hasenstaub
et al., 2007). Visual examination of our data suggested that click
stimuli presented during the synchronized state can evoke a similar
“flip” in auditory cortex. When the stimulus arrived during
a downstate, an upstate frequently ensued (Fig. 9a, trials 1e2).
Similarly, stimuli that arrived during upstates could trigger down-
states (Fig. 9a, trials 5e6). Note that the initial response to the click
(10e35 ms; dark gray shading) was roughly similar across trials,
whereas the persistent response (40e135 ms; light gray shading)
wasmore stronglymodulated by the activity state at the time of the
stimulus. We note that a number of previous studies have shown
that cortical responses to sounds can be modulated by the history
of previous stimuli, with stimulus-specific adaptation seen for
stimuli presented up to tens of seconds previously (Ulanovsky et al.,
2003, 2004). The effect we describe here however is different, being
a modulation by only spontaneous activity, not dependent on
presentation of preceding stimuli.

To illustrate howdynamic state can affect click responses, Fig. 9b
shows data from a recording session whose dynamic state spon-
taneously varied from highly synchronized (trials 1e2) to highly
desynchronized activity (trials 5e6). In these data, synchronized
and desynchronized are not discrete cortical states, but rather
extremes in a continuum. In the more synchronized cases (top),
responses follow a pattern similar to that shown in Fig. 9a. In
desynchronized states however (bottom), the persistent response
appears to be weakly modulated by the stimulus, instead returning
to a baseline firing rate that matches the average firing rate
preceding the stimulus (Curto et al., 2009).

6.2. A simple model of cortical state

Fig. 9 suggests a complex dependence of sensory responses on
dynamic and activity states at the time of stimulus presentation.
However, this apparently complex relationship can be explained to
a large extent by a simple principle, that sensory responses are



Fig. 9. Trial-to-trial variability across a range of cortical states. (A) Six examples of population responses to click stimuli, from a rat that exhibited stable dynamic state throughout
the recording. Vertical green lines denote stimuli (time 0); LFP (black trace), activity of simultaneously recorded single neurons (rasters) and smoothed multi-unit activity (MUA; red
trace) all show a pattern of population activity characteristic of the synchronized state. Right column shows an expanded view of the smoothed MUA in the response period for each
trial; gray shaded areas denote “initial” (10e35 ms; dark gray shading) and “persistent” (40e135 ms; light gray shading) response periods. The stimulus may arrive during
a downstate (trials 1,2), at the beginning of an upstate (trials 3,4), or well into an upstate (trials 5,6). While preceding activity does not have a clear effect on peak activity levels in
the initial response period, the timing of the stimulus relative to up/down transitions appears to modulate activity in the persistent response period. (B) Same conventions as in (a);
all data are selected from a different recording session that showed variable dynamic state. In the synchronized state (trials 1,2), persistent responses are anticorrelated with activity
levels in the 200e300 ms preceding the stimulus. In intermediate states (trials 3,4), the stimulus induces a large initial response followed by a transient downstate. In the most
desynchronized states (trials 5,6), responses exhibit a small but reliable initial response followed by a return to baseline, with no discernible persistent response. Adapted from
Curto et al. (2009).
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shaped by the same dynamics that generate spontaneous activity
prior to stimulus presentation. To show this, we predicted pop-
ulation sensory responses on individual trials, using a dynamical
system model whose parameters were estimated from sponta-
neous activity preceding each stimulus.

In order to characterize the population dynamics, we first
defined a variable v(t) that measures the average population firing
rate (represented by the red traces in Fig. 9). To predict sensory
activity, we used a dynamical system model, i.e. a differential
equation giving the rate of change of v(t) in terms of v, and another
variable w which captures the degree to which recent spiking
reduces network excitability. We found that the FitzhugheNagumo
(FHN) equations (Fitzhugh, 1955) provided a simple family of self-
exciting dynamical systems yielding good approximations for the
different dynamic states observed in our data, and also allowed
simple and robust parameter estimation from small data segments.
The FHN equations are:

_v ¼ a3v
3 þ a2v

2 þ a1vþ bwþ I þ eðtÞ (1)

_w ¼ ðv�wÞ=s (2)

The model parameters (a1, a2, a3, b, and I), that specify how v and w
evolve in time, correspond to its dynamic state. Note that while the
FHN equations were originally used to model action potential
generation in a single neuron, they are used here to model the
mean activity of a population. For our purposes this is a phenome-
nological model; however it can also be interpreted mechanisti-
cally as amodel of “mean field” network dynamics, where themean
rates of excitatory and inhibitory cells are both proportional to v,
and w represents the combined effects of adaptive phenomena
such as synaptic depression and cellular accommodation that
reduce network excitability. In this scheme, the coefficients of the
model can also be given mechanistic interpretations, with a1, a2,
and a3 corresponding to recurrent excitation and inhibition;
b determining the extent to which increases in w reduce the
excitability of the network; and I representing a constant ‘tonic
drive’ on all cells, such as might arise from an increase in mean
thalamic firing rates, or neuromodulatory activity that promotes
tonic firing.
6.3. Model quantitatively predicts the structure of stimulus-evoked
responses

To investigate whether the model could be used to quantita-
tively predict actual sensory responses on a trial-by-trial basis, we
tested whether models fit on a short period (w3 s) of spontaneous
activity immediately preceding a stimulus were able to predict the
structure of activity in the subsequent sensory response. The
prediction methodology is illustrated in Fig. 10a. A model fit from
spontaneous activity preceding a stimulus yields an estimate of
cortical state, including dynamic state (captured by model param-
eters a1, a2, a3, b, I, illustrated by phase portrait) and activity state (v,
w, illustrated by green star) at the time of the stimulus. A predicted
response can be generated by solving the model equations with the
fit parameters, using initial conditions given by the activity state,
and driven by an alpha-function driving force 3(t) without noise
(Fig. 10a, right).

Fig. 10b shows model-based estimates of cortical state and
predicted responses for each of the trials displayed in Fig. 9a (left
column). Visual inspection suggested that predicted responses
(blue) typically closely matched actual responses (red) for a period
of 100e200 ms after click presentation. Later features of the



Fig. 10. Stimulus-evoked responses can be predicted frommodels fit on prior spontaneous activity. (A) Methodology. 3 s of spontaneous activity preceding the stimulus is used to fit
the model parameters. The model-fit dynamic state (illustrated by the corresponding phase diagram), together with the activity state at the time of the stimulus (green star), is then
used to simulate an evoked response (blue), shown superimposed on the true response (red). As in Fig. 9, time 0 corresponds to presentation of click stimulus and shaded regions
correspond to initial (dark gray) and persistent (light gray) response periods. (B, C) Estimated dynamic states and simulated responses for each trial displayed in Fig. 9. (D)
Histograms of prediction error for a single trial from rat 1 (red line), compared to predictions for the response on this trial made from states estimated for all other trials. Estimates
from other trials, both within the same recording (left) and from other recordings (right), produced worse predictions. (E) Box plots of model fit percentiles for each trial, within and
across recordings. Median percentiles (red) are in each case significantly above chance level (50%). (F) Same as in (e), but performance is compared using only dynamic states from
other trials, keeping activity state at stimulus onset fixed. For recording sessions with high cortical state variability (1 and 2), percentiles were still high within and across recordings.
For recording sessions with very stable dynamic state (3 and 4), percentiles were not significantly above chance within each recording, but remained high across recordings.
Adapted from Curto et al. (2009).(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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response, such as “rebounds” from downstates that sometimes
occurred w200 ms after click onset, were predicted with less
accuracy. Because these trials all had similar dynamic state, there
was relatively little variation in the model-fit phase portraits, and
response variability was primarily explained by differences in
activity state (green stars) at the time of the stimulus. Fig.10c shows
the predictions of the model for the trials in Fig. 9b, in which both
dynamic and activity state were variable. Again, themodel typically
predicted the early component of the response well, with accuracy
decaying after a period of 100e200ms. Model fits were not perfect:
one feature that the model erroneously predicted was an induced
suppression atw100ms in themost desynchronized trials (Fig.10c,
bottom row). Nevertheless, despite its simplicity, the model
appeared to capture the major features of cortical population
responses across a range of dynamic states.

To quantify the ability of the models fit on each trial to predict
the structure of the subsequent evoked response, we computed the
driving force 3(t) that would be necessary for the model to produce
the actual response in the 300 ms following the time of the stim-
ulus. The integral of 32(t) was used as a measure of how hard the
model would have to be driven in order to exactly match the data;
we call this the “prediction error”. The smaller the prediction error,
the more naturally the real response trajectory follows the model’s
prediction. By comparing the prediction error of themodel fitted on
spontaneous activity before a given trial, with the prediction errors
of a null ensemble of models derived from other stimulus
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presentations, we were able to demonstrate the model’s ability to
capture the role of activity state and dynamic state in shaping click
responses (Fig. 10def; Curto et al., 2009). This suggests that sensory
responses evolve according to the same cortical dynamics that
govern the preceding spontaneous activity, and that these
dynamics may be approximated by the FHN model family.

Further analyses (Curto et al., 2009) suggested a possible
interpretation for why this family of models was able to predict
sensory responses. In synchronized states, dynamics weremodeled
by a self-exciting system, which can explain stimulus-induced
“flipping” of up and downstates. According to the suggested
interpretation of the model, self-excitation arises from recurrent
excitationwithin cortex, counterbalanced by a build-up of adaptive
processes such as synaptic depression and potassium channel
activation, modeled by the w parameter. In downstates, w is small,
and sensory stimulation triggers a rapid increase in v due to self-
excitation. This leads to prolonged activity (an upstate), until w has
increased enough to damp down the network’s excitability. When
stimuli are presented in an upstate, however, v is initially high and
w of intermediate value, not yet enough to terminate the upstate. In
this case, sensory stimulation causes a transient increase in v, fol-
lowed by an increase in w which accelerates transition back to the
downstate. During desynchronized states, model fits were closer to
linear, with a single stable fixed point at intermediate values of v
and w. In this state, stimuli caused reliable transient perturbations
of both v and w, corresponding to the lower trial-to-trial variability
seen in this state. A combination of recurrent excitation and
network adaptation, with dynamics that vary with cortical state,
may thus explain several features of cortical population dynamics.

In summary, the initial (w50 ms) response of the population to
click stimuli was largely independent of cortical state, while later
response components showed a complex dependence on both
dynamic and activity state, including “flip-flop” like behavior.
Nevertheless, this apparently complex behavior could be explained
by the simple principle that sensory responses evolve according to
the same dynamics as spontaneous activity, using a low-dimen-
sional dynamical system model to predict sensory responses on
a trial-to-trial basis.

7. Conclusions and future questions

Although we now have a reasonable understanding of how
individual neurons in auditory cortex represent simple sound
stimuli, the task of understanding the way these individual
neurons come together as a population is only just beginning. The
simplest possibility would be that of conditional independence, in
which case a complete description of population activity could be
inferred from a knowledge of each neuron’s relationship to sensory
stimuli, with no coordination between neurons other than that
induced by sensory stimuli themselves. This possibility corre-
sponds basically to a framework proposed by Barlow (1972) under
the name of the Single Neuron Doctrine (see Harris, 2005, for a more
detailed discussion). Our data suggest that this picture is incom-
plete. The cortex can show structured activity patterns even in the
absence of stimuli, and pattern of background activity at the time
a stimulus is presented appears to influence stimulus-induced
activity, particularly for the extended (>w50 ms) component of
the response.

7.1. Similarities between evoked and spontaneous activity

When considering the initial response period, we observed
many similarities between evoked responses and spontaneous
activity. Within layer 5, we observed conserved constraints on the
order in which neurons can fire, and also the combinations of
neurons that can be simultaneously active. Looking across layers,
we observed similarities in the sparseness profiles of different cell
types, as well as variations between cells that at least morpholog-
ically appeared to belong to a single cell class.

What might cause these similarities? One can imagine a number
of ways in which the properties of a neural circuit could impose
constraints on the spike patterns it can generate. First, cortical
neurons express diverse sets of voltage-gated ion channels, and are
diverse in their intrinsic physiological properties even within
a single cortical layer (Storm, 2000; Sugino et al., 2006), which may
contribute to the diversity of timing profiles observed, and provide
an explanation for why the timing profiles of individual cells should
be similar across multiple stimuli. Second, connectivity within
cortical circuits is far from homogenous; for example, strong
reciprocal connectivity occurs more than expected by chance (Song
et al., 2005). Such non-random connectivity patterns may impose
constraints on the possible cell groups that can be active at any
time. A number of differences have been found in the physiology
and connectivity of different cortical cell classes, which may
contribute to differing sparseness patterns between layers. For
example, while lateral excitatory connections in deep layers are
typically strong and widespread (Feldmeyer et al., 2006; Schubert
et al., 2007; Thomson and Lamy, 2007), the probability of PCePC
connections in L2/3 significantly decays over a spatial scale of
150mm (Holmgren et al., 2003; Oswald and Reyes, 2008) providing
a potential mechanism for local clustering of superficial spiking
activity at this scale. Furthermore, inhibitory inputs have been
reported to be stronger onto L2/3 PCs than L5 PCs (van Brederode
and Spain, 1995), with thick L5 PCsdfor which we observed the
densest activitydreceiving weaker inhibition than slender PCs
(Hefti and Smith, 2000, 2003). Layer-specific features of excitatory
and inhibitory circuits such as these may impose a consistent
laminar structure on population activity patterns, whether evoked
by auditory stimuli, or occurring spontaneously.

Beyond the initial period, responses were complex and highly
variable between presentations of identical stimuli, at least in
urethanized animals (Curto et al., 2009). However, much of this
variability appears not to be random, but shows a systematic
dependence on brain state and on the pattern of ongoing back-
ground activity when the stimulus was presented. We found that
a simple self-exciting system model, whose dynamics was inferred
from that of spontaneous activity immediately prior to the stim-
ulus, could predict the late-period responses of layer 5 populations.
This suggests that the complex form of the late-period responses
may result from the same dynamical mechanisms that sculpt
spontaneous activity.

7.2. Differences between evoked and spontaneous activity

The strong similarities between spontaneous and evoked
activity are surprising, given that one would expect an animal
should respond differently to a real sensory stimulus than to
activity generated spontaneously within its own brain. So far we
have identified two differences between evoked and spontaneous
activity, both of which concern the manner in which activity
propagates. Evoked activity appears first in thalamorecipient layers,
and spreads quickly across columns; spontaneous activity appears
first in deep layers and can spread more slowly across columns,
sometimes appearing as a traveling wave (Luczak et al., 2007). In
principle, these differences could allow downstream neurons to
distinguish true stimuli from spontaneous patterns. However,
efferent projections from cortex can show laminar bias (subcortical
projections, for example, arise from deep but not superficial layers),
and a downstream neuron receiving inputs from only one layer
could not distinguish relative laminar timing. It would be
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surprising, however, if the differences we have found so far turned
out to be the only differences between spontaneous and evoked
activity. For example, the methods we used to identify cells in vivo
are crude; cortical cells can be highly diverse in terms of gene
expression, even if morphologically similar (Arlotta et al., 2005;
Sugino et al., 2006). Future technological developments that
allow genetic identification of recorded neurons might reveal
further differences between spontaneous and evoked activity.

The finding that evoked and spontaneous activity onsets prop-
agate differently across cortical layers suggests that these types of
activity are triggered by different mechanisms in vivo. Afferents
from the ventral medial geniculate nucleus to primary auditory
cortex terminatemost densely in two laminar bands corresponding
to lower L3/L4 and the L5/6 boundary (Kimura et al., 2003;
Romanski and LeDoux, 1993). We found that the earliest sensory-
evoked responses are found in the middle layers and a restricted
portion of the lower layers, which correspond on an experiment-
to-experiment basis with the locations of early sinks measured by
current source density analysis (Kaur et al., 2005; Sakata and Harris,
2009, Supplementary Figures S10 and S16). Our data are therefore
consistent with an initiation of sensory-evoked activity in the
thalamorecipient layers. We note that PCs can receive excitatory
inputs all along their dendritic length and that thalamic inputs
could in principle provide excitation to neurons of other laminae
(Bureau et al., 2006). Earlier sensory responses in cells of thala-
morecipient layers might however reflect these cells receiving
stronger excitatory drive, perhaps due to excitation proximal to the
soma. While we observed spontaneous activity to often spread as
a traveling wave, sensory responses appeared almost simulta-
neously across the cortical surface. This pattern of sensory
responses is therefore consistent with divergent and broadly tuned
thalamocortical input, a result also suggested by the persistence of
broadly tuned responses after inhibition of spiking in auditory
cortex (Liu et al., 2007). The observed spread of upstates is
consistent with in vitromodels, which show generation and spread
of spontaneous activity in deep layers (Sanchez-Vives and
McCormick, 2000). Deep layers are a major target of “feedback”
projections from higher cortical areas (Felleman and Van Essen,
1991; Rouiller et al., 1991). The fact that auditory cortical upstates
were first seen in deep layers is thus consistent with a role of
projections from higher cortical regions in initiating spontaneous
patterns in primary sensory cortex, consistent with their proposed
role in processes such as memory replay (Buzsaki, 1989; Hoffman
et al., 2007; Marr, 1971).

7.3. Implications for cortical processing in behaving animals

The above datawas collected in either urethane-anesthetized or
unanesthetized passively listening animals. Brain state changes
occur spontaneously in both these conditions, and research in
somatosensory cortex suggests that the variations in brain state
seen under urethane can form a good model for variations in brain
state found between behavioral conditions (Castro-Alamancos,
2004a). Clearly, however, an important topic for future research is
to study population-level activity in auditory cortex of actively
behaving animals. At present we can only speculate what the
results of such studies might be. We would like to suggest two
possibilities.

The first possibility is that the structure of cortical activity might
actually be simpler in actively behaving than in passively listening
animals.We found that in themost activated states under urethane,
background activity was largely unstructured and sensory
responses were more reliable and repeatable between stimulus
presentations. Perhaps in an animal that is highly attentive to
acoustic stimuli, auditory cortex will exhibit a constant activated
state, thereby forming a faithful representation of external stimuli
in which responses are conditionally independent, i.e. in which the
single neuron doctrine holds (Barlow, 1972; Harris, 2005).

The second possibility, however, is that variability and state-
dependence of sensory responses is actually fundamental to
cortical information processing. In this view, the role of sensory
cortex is not just to represent external stimuli, but to actively
transform them in away that depends on context, e.g. the cognitive
state of the animal. A number of studies have shown that spiking
activity in auditory and other sensory cortices can be modulated by
multimodal, nonsensory, and cognitive variables (Brosch et al.,
2005; Lakatos et al., 2007; Shuler and Bear, 2006), presumably
reflecting the influence of “topedown” inputs from higher cortical
structures. In anesthetized subjects we found that spontaneous
activity prior to stimulus presentation modulated sensory
responses, and that this modulation was strongest for the late-
period responses (>50ms after stimulus onset). If similar processes
occur in behaving animals, it would suggest that topedown inputs,
by establishing an appropriate pattern of ongoing activity, could
shape the response to subsequent sensory stimuli. We note that
a number of studies in behaving animals have shown that while
early period responses tend to faithfully reflect sensory inputs, late-
period responses also reflect other features such as attention,
categories and behavioral choices (Brincat and Connor, 2006;
Cohen and Maunsell, 2009; Jeschke et al., 2008; John et al., 1973;
Ohl et al., 2001; Scheich et al., 2007; Sugase et al., 1999). The
behavior produced by an animal is likewise shaped not only by
immediate sensory stimuli, but also by the cognitive context in
which they occur. The dependence of late-period responses on
prior activity might thus be a signature of a computation in which
stimuli and context come together to produce appropriate
behavior.
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